rmsprop_op.h 10.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
sneaxiy 已提交
16
#include <math.h>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19 20 21
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

S
sneaxiy 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T>
struct DenseRmspropGradFunctor {
  inline explicit DenseRmspropGradFunctor(const T *grad) : grad_(grad) {}

  HOSTDEVICE inline T operator()(int64_t idx) const { return grad_[idx]; }

  const T *grad_;
};

template <typename T>
struct SparseRmspropGradFunctor {
  inline SparseRmspropGradFunctor(const T *grad, const int64_t *rows,
                                  int64_t row_numel, int64_t row_count)
      : grad_(grad),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  HOSTDEVICE inline T operator()(int64_t idx) const {
    auto row_idx = math::BinarySearch(rows_, row_count_, idx / row_numel_);
    return row_idx >= 0 ? grad_[row_idx * row_numel_ + idx % row_numel_] : 0;
  }

  const T *grad_;
  const int64_t *rows_;
  int64_t row_numel_;
  int64_t row_count_;
};

template <typename T, typename GradFunctor>
struct UncenteredRmspropFunctor {
  UncenteredRmspropFunctor(T *param, T *ms, T *mom, const T *lr, T rho,
                           T epsilon, T momentum,
                           const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mom_out = momentum_ * mom_[idx] + lr_[0] * g / sqrt(ms_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

template <typename T, typename GradFunctor>
struct CenteredRmspropFunctor {
  CenteredRmspropFunctor(T *param, T *ms, T *mom, T *mean_grad, const T *lr,
                         T rho, T epsilon, T momentum,
                         const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        mean_grad_(mean_grad),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mg_out = rho_ * mean_grad_[idx] + (1 - rho_) * g;
    T mom_out = momentum_ * mom_[idx] +
                lr_[0] * g / sqrt(ms_out - mg_out * mg_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
    mean_grad_[idx] = mg_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  T *mean_grad_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

Q
QI JUN 已提交
130
template <typename DeviceContext, typename T>
131 132
class RmspropOpKernel : public framework::OpKernel<T> {
 public:
S
sneaxiy 已提交
133
  void Compute(const framework::ExecutionContext &ctx) const override {
S
sneaxiy 已提交
134
    using LoDTensor = framework::LoDTensor;
S
sneaxiy 已提交
135
    auto *grad_var = ctx.InputVar("Grad");
S
sneaxiy 已提交
136 137 138
    auto *param_out = ctx.Output<LoDTensor>("ParamOut");
    auto *moment_out = ctx.Output<LoDTensor>("MomentOut");
    auto *mean_square_out = ctx.Output<LoDTensor>("MeanSquareOut");
139

S
sneaxiy 已提交
140 141 142 143
    auto epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto rho = static_cast<T>(ctx.Attr<float>("decay"));
    auto momentum = static_cast<T>(ctx.Attr<float>("momentum"));
    bool centered = ctx.Attr<bool>("centered");
144

S
sneaxiy 已提交
145 146 147 148
    auto &p_tensor = *ctx.Input<LoDTensor>("Param");
    auto &ms_tensor = *ctx.Input<LoDTensor>("MeanSquare");
    auto &lr_tensor = *ctx.Input<LoDTensor>("LearningRate");
    auto &mom_tensor = *ctx.Input<LoDTensor>("Moment");
149

S
sneaxiy 已提交
150
    PADDLE_ENFORCE_EQ(&p_tensor, param_out,
C
Chengmo 已提交
151 152
                      platform::errors::InvalidArgument(
                          "Param and ParamOut must be the same Tensor"));
S
sneaxiy 已提交
153
    PADDLE_ENFORCE_EQ(&mom_tensor, moment_out,
C
Chengmo 已提交
154 155 156 157 158 159
                      platform::errors::InvalidArgument(
                          "Moment and MomentOut must be the same Tensor"));
    PADDLE_ENFORCE_EQ(
        &ms_tensor, mean_square_out,
        platform::errors::InvalidArgument(
            "MeanSquare and MeanSquareOut must be the same Tensor"));
S
sneaxiy 已提交
160 161 162 163

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    size_t limit = static_cast<size_t>(ms_tensor.numel());

S
sneaxiy 已提交
164 165
    if (grad_var->IsType<LoDTensor>()) {
      auto &grad_tensor = grad_var->Get<LoDTensor>();
S
sneaxiy 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

      if (std::is_same<DeviceContext, platform::CPUDeviceContext>::value) {
        auto &place =
            *ctx.template device_context<DeviceContext>().eigen_device();
        auto lr_value = lr_tensor.data<T>()[0];

        auto p = EigenVector<T>::Flatten(p_tensor);
        auto ms = EigenVector<T>::Flatten(ms_tensor);
        auto g = EigenVector<T>::Flatten(grad_tensor);
        auto mom = EigenVector<T>::Flatten(mom_tensor);

        auto p_out = EigenVector<T>::Flatten(*param_out);
        auto mom_out = EigenVector<T>::Flatten(*moment_out);
        auto ms_out = EigenVector<T>::Flatten(*mean_square_out);

        ms_out.device(place) = rho * ms + (1 - rho) * g * g;
        if (centered) {
S
sneaxiy 已提交
183
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
S
sneaxiy 已提交
184
          auto mg = EigenVector<T>::Flatten(mg_tensor);
S
sneaxiy 已提交
185
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
186 187 188 189
          PADDLE_ENFORCE_EQ(
              &mg_tensor, mean_grad_out,
              platform::errors::InvalidArgument(
                  "MeanGrad and MeanGradOut must be the same Tensor"));
S
sneaxiy 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
          auto mg_out = EigenVector<T>::Flatten(*mean_grad_out);

          mg_out.device(place) = rho * mg + (1 - rho) * g;
          mom_out.device(place) =
              momentum * mom +
              lr_value * g / (ms_out - mg_out.square() + epsilon).sqrt();
        } else {
          mom_out.device(place) =
              momentum * mom + lr_value * g / (ms_out + epsilon).sqrt();
        }
        p_out.device(place) = p - mom_out;
      } else {
        DenseRmspropGradFunctor<T> grad_func(grad_tensor.data<T>());
        platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
        if (centered) {
S
sneaxiy 已提交
205 206
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
207 208 209 210
          PADDLE_ENFORCE_EQ(
              &mg_tensor, mean_grad_out,
              platform::errors::InvalidArgument(
                  "MeanGrad and MeanGradOut must be the same Tensor"));
S
sneaxiy 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          for_range(CenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()),
              mean_grad_out->mutable_data<T>(ctx.GetPlace()),
              lr_tensor.data<T>(), rho, epsilon, momentum, grad_func));
        } else {
          for_range(UncenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
              rho, epsilon, momentum, grad_func));
        }
      }
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto &grad = grad_var->Get<framework::SelectedRows>();
S
sneaxiy 已提交
227 228
      framework::SelectedRows tmp_merged_grad;
      framework::SelectedRows *merged_grad = &tmp_merged_grad;
S
sneaxiy 已提交
229 230 231 232
      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(dev_ctx, grad, merged_grad);

      platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
S
sneaxiy 已提交
233 234
      const int64_t *rows = merged_grad->rows().Data(ctx.GetPlace());

S
sneaxiy 已提交
235 236 237 238 239
      auto &merged_tensor = merged_grad->value();
      int64_t row_count = merged_grad->rows().size();
      int64_t row_numel = merged_tensor.numel() / row_count;
      SparseRmspropGradFunctor<T> grad_func(merged_tensor.data<T>(), rows,
                                            row_numel, row_count);
240

S
sneaxiy 已提交
241
      if (centered) {
S
sneaxiy 已提交
242 243
        auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
        auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
244 245 246 247
        PADDLE_ENFORCE_EQ(
            &mg_tensor, mean_grad_out,
            platform::errors::InvalidArgument(
                "MeanGrad and MeanGradOut must be the same Tensor"));
S
sneaxiy 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260
        for_range(CenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()),
            mean_grad_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      } else {
        for_range(UncenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      }
261
    } else {
C
Chengmo 已提交
262 263 264 265 266 267
      PADDLE_ENFORCE_EQ(false, true,
                        platform::errors::PermissionDenied(
                            "Unsupported Variable Type of Grad "
                            "in RmspropOp. Excepted LodTensor "
                            "or SelectedRows, But received [%s]",
                            paddle::framework::ToTypeName(grad_var->Type())));
268
    }
269 270 271 272 273
  }
};

}  // namespace operators
}  // namespace paddle