fp16_utils.py 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from ... import core
18
from ... import framework
19
from ... import layers
20 21
from ... import global_scope
from ...log_helper import get_logger
22 23 24
from ...wrapped_decorator import signature_safe_contextmanager
from .fp16_lists import AutoMixedPrecisionLists
import collections
25 26
import logging
import numpy as np
27

28
__all__ = ["fp16_guard", "cast_model_to_fp16", "cast_parameters_to_fp16"]
29

30 31
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
32

33 34 35 36 37 38 39
_valid_types = [
    core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
    core.VarDesc.VarType.LOD_TENSOR_ARRAY
]

_fp16_guard_pattern = "__use_fp16__"

40

J
Jie Fang 已提交
41 42
def _rename_arg(op, old_name, new_name):
    """
43
    If an op has old_name input and output, rename these input
J
Jie Fang 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57
    args new_name.

    Args:
        op (Operator): Current operator.
        old_name (str): The old name of input args.
        new_name (str): The new name of input args.
    """
    op_desc = op.desc
    if isinstance(op_desc, tuple):
        op_desc = op_desc[0]
    op_desc._rename_input(old_name, new_name)
    op_desc._rename_output(old_name, new_name)


58 59 60 61 62 63 64 65 66 67 68 69
def _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops):
    for block in program.blocks:
        ops = block.ops
        block_id = block.idx
        for op in ops:
            if op not in origin_ops or op in keep_fp32_ops:
                continue
            for name in op.input_arg_names:
                if name in op_var_rename_map[block_id]:
                    op._rename_input(name, op_var_rename_map[block_id][name])


J
Jie Fang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
def _dtype_to_str(dtype):
    """
    Convert specific variable type to its corresponding string.

    Args:
        dtype (VarType): Variable type.
    """
    if dtype == core.VarDesc.VarType.FP16:
        return 'fp16'
    else:
        return 'fp32'


83 84 85 86 87 88 89 90 91
def _keep_fp32_input(op, in_name):
    op_type = op.type
    if op_type in ['batch_norm', 'layer_norm']:
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
92 93 94 95
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
            'LnScale', 'LnBias', 'Ln2Scale', 'Ln2Bias', "Ln1Scale", "Ln1Bias"
        }
96 97 98 99 100 101 102 103 104
    return False


def _keep_fp32_output(op, out_name):
    op_type = op.type
    if op_type in ['batch_norm', 'fused_bn_add_activation', 'layer_norm']:
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
105 106 107 108 109
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
            'LnMean', 'LnVariance', 'Ln2Mean', 'Ln2Variance', 'Ln1Mean',
            'Ln1Variance'
        }
110 111 112
    return False


J
Jie Fang 已提交
113 114 115 116 117 118 119 120 121
def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
    """
    Insert cast op and rename args of input and output.

    Args:
        block (Program): The block in which the operator is.
        op (Operator): The operator to insert cast op.
        idx (int): The index of current operator.
        src_dtype (VarType): The input variable dtype of cast op.
Z
Zhen Wang 已提交
122
        dest_dtype (VarType): The output variable dtype of cast op.
J
Jie Fang 已提交
123 124 125 126 127

    Returns:
        num_cast_op (int): The number of cast ops that have been inserted.
    """
    num_cast_ops = 0
128

J
Jie Fang 已提交
129
    for in_name in op.input_names:
130 131 132
        if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(op,
                                                                       in_name):
            continue
J
Jie Fang 已提交
133
        for in_var_name in op.input(in_name):
H
huangxu96 已提交
134
            in_var = block._find_var_recursive(in_var_name)
135
            if in_var.type not in _valid_types or in_var.dtype == dest_dtype:
J
Jie Fang 已提交
136 137
                continue
            if in_var.dtype == src_dtype:
138 139 140
                cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
                out_var = block.vars.get(cast_name)
                if out_var is None or out_var.dtype != dest_dtype:
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    op_device = op.attr('op_device')
                    # NOTE(wangxi): optimize for pipeline, reduce one send.
                    # if in_var is stop_gradient and prev_op device is `all`,
                    # set cast_op device to `all`, can reduce send cast_var.
                    # TODO: need remove this after we unified the dynamic
                    # and static pipeline interface.
                    if src_dtype == core.VarDesc.VarType.FP32 and in_var.stop_gradient:
                        prev_op = None
                        if in_var.op is op:
                            prev_op = find_true_prev_op(block.ops, op,
                                                        in_var_name)
                        elif in_var.op is not None:
                            prev_op = in_var.op

                        prev_op_device = None
                        if prev_op is not None:
                            prev_op_device = prev_op.attr('op_device')

                        if prev_op_device is not None and 'all' in prev_op_device:
                            op_device = prev_op_device

162 163 164 165
                    out_var = block.create_var(
                        name=cast_name,
                        dtype=dest_dtype,
                        persistable=False,
Z
Zhen Wang 已提交
166
                        stop_gradient=in_var.stop_gradient)
167

F
fangshuixun007 已提交
168
                    block._insert_op_without_sync(
169 170 171 172 173 174
                        idx,
                        type="cast",
                        inputs={"X": in_var},
                        outputs={"Out": out_var},
                        attrs={
                            "in_dtype": in_var.dtype,
175
                            "out_dtype": out_var.dtype,
176
                            "op_device": op_device
177 178
                        })
                    num_cast_ops += 1
J
Jie Fang 已提交
179 180 181 182
                _rename_arg(op, in_var.name, out_var.name)
            else:
                if op.has_attr('in_dtype'):
                    op._set_attr('in_dtype', dest_dtype)
Z
Zhen Wang 已提交
183
    if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype == core.VarDesc.VarType.FP16:
J
Jie Fang 已提交
184
        for out_name in op.output_names:
185
            if _keep_fp32_output(op, out_name):
186
                continue
J
Jie Fang 已提交
187 188
            for out_var_name in op.output(out_name):
                out_var = block.var(out_var_name)
189
                if out_var.type not in _valid_types:
J
Jie Fang 已提交
190
                    continue
191 192
                if out_var.dtype == core.VarDesc.VarType.FP32:
                    out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
J
Jie Fang 已提交
193
                    if op.has_attr('out_dtype'):
194
                        op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
J
Jie Fang 已提交
195 196 197
    return num_cast_ops


198 199 200 201 202 203 204 205 206
def _insert_cast_post_op(block, op, idx, src_dtype, dest_dtype, target_name,
                         op_var_rename_map):
    num_cast_ops = 0

    target_var = block.var(target_name)
    if target_var.type not in _valid_types or target_var.dtype == dest_dtype:
        return num_cast_ops

    assert target_var.dtype == src_dtype, \
207 208
        "The real dtype({}) is not equal to the src dtype({})".format(
            _dtype_to_str(target_var.dtype), _dtype_to_str(src_dtype))
209 210 211 212 213 214 215 216 217 218 219 220 221 222

    cast_name = target_var.name + '.cast_' + _dtype_to_str(dest_dtype)
    cast_var = block.vars.get(cast_name)
    if cast_var is None or cast_var.dtype != dest_dtype:
        cast_var = block.create_var(
            name=cast_name,
            dtype=dest_dtype,
            persistable=False,
            stop_gradient=target_var.stop_gradient)
        block._insert_op(
            idx,
            type="cast",
            inputs={"X": target_var},
            outputs={"Out": cast_var},
223 224 225 226 227
            attrs={
                "in_dtype": target_var.dtype,
                "out_dtype": cast_var.dtype,
                "op_device": op.attr("op_device")
            })
228 229 230 231 232 233
        num_cast_ops += 1
        op_var_rename_map[block.idx][target_var.name] = cast_var.name

    return num_cast_ops


234 235 236 237 238 239 240 241 242 243
def find_true_prev_op(ops, cur_op, var_name):
    """
    Find the true prev op that outputs var_name variable.

    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
    """
    prev_op = []
J
Jie Fang 已提交
244
    for op in ops:
245 246
        if op == cur_op:
            break
J
Jie Fang 已提交
247 248 249
        for out_name in op.output_names:
            for out_var_name in op.output(out_name):
                if out_var_name == var_name:
250 251 252 253 254 255 256 257
                    prev_op.append(op)
    if prev_op:
        if not len(prev_op) == 1:
            raise ValueError("There must be only one previous op "
                             "that outputs {0} variable".format(var_name))
        else:
            return prev_op[0]
    return None
J
Jie Fang 已提交
258 259


260
def find_true_post_op(ops, cur_op, var_name, search_all=False):
M
mapingshuo 已提交
261 262 263 264 265 266 267
    """
    if there are post ops, return them, if there is no post op,
    return None instead.
    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
268
        search_all (bool): The type of operator search. Use if \"cur_op\" is not in the \"ops\" set.
M
mapingshuo 已提交
269 270
    """
    post_op = []
271 272
    if search_all:
        """
273 274 275 276 277
        \"cur_op\" do not have to be in list of \"ops\". E.g. \"cur_op\" can come
        from startup_prog block and \"ops\" list from main_prog block.
        By setting idx to -1, we'll start looking for post-ops from the top of the list.
        If search_all is False, assume that \"cur_op\" is in \"ops\" list,
        so to reduce the time of search we can start iterating from \"cur_op\" idx.
278 279 280 281 282 283
        """
        idx = -1
    else:
        for idx, op in enumerate(ops):
            if op == cur_op:
                break
M
mapingshuo 已提交
284 285 286 287 288 289 290

    for i in range(idx + 1, len(ops)):
        op = ops[i]
        for in_name in op.input_names:
            for in_var_name in op.input(in_name):
                if in_var_name == var_name:
                    post_op.append(op)
291 292

    return post_op
M
mapingshuo 已提交
293 294 295 296 297 298 299 300 301 302 303


def find_op_index(block_desc, cur_op_desc):
    """
    """
    for idx in range(block_desc.op_size()):
        if cur_op_desc == block_desc.op(idx):
            return idx
    return -1


304 305 306 307 308 309 310 311 312 313 314 315
def _is_in_black_varnames(op, amp_lists):
    for in_name in op.input_arg_names:
        if in_name in amp_lists.black_varnames:
            return True

    for out_name in op.output_arg_names:
        if out_name in amp_lists.black_varnames:
            return True

    return False


316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
def _need_keep_fp32(op, unsupported_op_list, use_fp16_guard):
    if op.type in unsupported_op_list:
        # the highest priority condition: If ops don't have fp16 computing kernels,
        # they must be executed in fp32 calculation pattern.
        return True

    # process ops about learning rate
    in_out_arg_names = []
    in_out_arg_names.extend(list(op.input_arg_names))
    in_out_arg_names.extend(list(op.output_arg_names))
    for name in in_out_arg_names:
        if "learning_rate" in name:
            return True

    if use_fp16_guard:
        if op.has_attr("op_namescope") and \
332
                (_fp16_guard_pattern in op.attr("op_namescope")):
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            # op in fp16 guard
            return False
        else:
            # op not in fp16 guard
            return True
    else:
        return False


@signature_safe_contextmanager
def fp16_guard():
    """
    As for the pure fp16 training, if users set `use_fp16_guard` to True,
    only those ops created in the context manager `fp16_guard` will be
    transformed as float16 type.
H
huangxu96 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.nn.functional as F
            paddle.enable_static()
            data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
            conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)

            with paddle.static.amp.fp16_guard():
                bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                hidden = paddle.static.nn.fc(pool, size=10)
                loss = paddle.mean(hidden)
364 365 366 367 368 369
    """
    with framework.name_scope(prefix=_fp16_guard_pattern):
        yield


def cast_model_to_fp16(program, amp_lists=None, use_fp16_guard=True):
370 371 372 373 374 375
    """
    Traverse all ops in the whole model and set their inputs and outputs
    to the fp16 data type. This function will do some special process for
    the batch normalization, which keeps the computational process of
    batchnorms in FP32.
    Args:
376 377 378 379
        program (Program): The used program.
        amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
        use_fp16_guard(bool): Determine whether to use `fp16_guard` when
                              constructing the program. Default True.
380 381
    """

382 383 384 385 386 387 388 389 390 391
    if amp_lists is None:
        amp_lists = AutoMixedPrecisionLists()
    global_block = program.global_block()
    keep_fp32_ops = set()
    to_fp16_var_names = set()
    origin_ops = []
    for block in program.blocks:
        origin_ops.extend(block.ops)

    for block in program.blocks:
392 393 394 395
        ops = block.ops
        for op in ops:
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
396 397 398
            if _need_keep_fp32(op, amp_lists.unsupported_list, use_fp16_guard):
                keep_fp32_ops.add(op)
                continue  # processed below
399
            for in_name in op.input_names:
400
                if _keep_fp32_input(op, in_name):
401 402 403 404 405 406 407
                    continue
                for in_var_name in op.input(in_name):
                    in_var = None
                    try:
                        in_var = block.var(in_var_name)
                    except ValueError as e:
                        _logger.debug(
408
                            "-- {}, try to get it in the global block --".
409 410 411 412
                            format(e))
                        in_var = global_block.var(in_var_name)
                        if in_var is not None:
                            _logger.debug(
413
                                "-- var {} is got in the global block --".
414 415
                                format(in_var_name))

416
                    if in_var is None or in_var.type not in _valid_types:
417 418 419 420
                        continue

                    if in_var.dtype == core.VarDesc.VarType.FP32:
                        in_var.desc.set_dtype(core.VarDesc.VarType.FP16)
421
                        to_fp16_var_names.add(in_var_name)
422 423 424 425 426 427

                    _logger.debug(
                        "-- op type: {}, in var name: {}, in var dtype: {} --".
                        format(op.type, in_var_name, in_var.dtype))

            for out_name in op.output_names:
428
                if _keep_fp32_output(op, out_name):
429 430 431 432 433 434 435
                    continue
                for out_var_name in op.output(out_name):
                    out_var = None
                    try:
                        out_var = block.var(out_var_name)
                    except ValueError as e:
                        _logger.debug(
436
                            "-- {}, try to get it in the global block --".
437 438 439 440
                            format(e))
                        out_var = global_block.var(out_var_name)
                        if out_var is not None:
                            _logger.debug(
441
                                "-- var {} is got in the global block --".
442 443
                                format(out_var_name))

444
                    if out_var is None or out_var.type not in _valid_types:
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                        continue

                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP16)

                    _logger.debug(
                        "-- op type: {}, out var name: {}, out var dtype: {} --".
                        format(op.type, out_var_name, out_var.dtype))
            if op.has_attr('in_dtype') and op.attr(
                    'in_dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('in_dtype', core.VarDesc.VarType.FP16)
            if op.has_attr('out_dtype') and op.attr(
                    'out_dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
            if op.has_attr('dtype') and op.attr(
                    'dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('dtype', core.VarDesc.VarType.FP16)

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    # process ops in keep_fp32_ops
    op_var_rename_map = [
        collections.OrderedDict() for _ in range(len(program.blocks))
    ]
    for block in program.blocks:
        ops = block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if op in keep_fp32_ops:
                pre_cast_num = _insert_cast_op(block, op, idx,
                                               core.VarDesc.VarType.FP16,
                                               core.VarDesc.VarType.FP32)
                num_cast_ops += pre_cast_num
                for out_var_name in op.output_arg_names:
                    out_var = block.vars.get(out_var_name)
                    if out_var is None or out_var.type not in _valid_types:
                        continue
                    if out_var.dtype == core.VarDesc.VarType.FP16:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
                        post_ops = find_true_post_op(ops, op, out_var_name)
                        for post_op in post_ops:
                            if post_op in keep_fp32_ops:
                                continue
                            post_cast_num = _insert_cast_post_op(
                                block, op, idx + pre_cast_num + 1,
                                core.VarDesc.VarType.FP32,
                                core.VarDesc.VarType.FP16, out_var_name,
                                op_var_rename_map)
                            num_cast_ops += post_cast_num
            idx += num_cast_ops + 1

    _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops)
    return to_fp16_var_names
498

499 500

def cast_parameters_to_fp16(place, program, scope=None, to_fp16_var_names=None):
501
    """
502
    Traverse all parameters in the whole model and set them to the FP16 data type.
503 504
    Whereas, this function will keep parameters of batchnorms in FP32.
    Args:
505 506 507 508 509 510 511
        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
        program (Program): The used program.
        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                      Default is None.
        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                               will be set to FP16. Usually, it is the returned
                                               value of `cast_model_to_fp16` API.
512
    """
513 514 515 516 517 518
    all_parameters = []
    for block in program.blocks:
        all_parameters.extend(block.all_parameters())

    fp16_var_names = to_fp16_var_names if to_fp16_var_names else set()
    var_scope = scope if scope else global_scope()
519
    for param in all_parameters:
520 521
        if param.name in fp16_var_names:
            _logger.debug("---- cast {} to fp16 dtype ----".format(param.name))
522 523 524 525 526
            param_t = var_scope.find_var(param.name).get_tensor()
            data = np.array(param_t)
            param_t.set(np.float16(data), place)


J
Jie Fang 已提交
527
def rewrite_program(main_prog, amp_lists):
J
Jie Fang 已提交
528
    """
529
    Traverse all ops in current block and insert cast op according to
J
Jie Fang 已提交
530 531 532 533
    which set current op belongs to.

    1. When an op belongs to the black list, add it to black set
    2. When an op belongs to the white list, add it to white set
534 535 536 537
    3. When an op belongs to the gray list. If one
       of its inputs is the output of black set op or black list op,
       add it to black set. If all of its previous ops are not black
       op and one of its inputs is the output of white set op or
J
Jie Fang 已提交
538 539
       white list op, add it to white set.
    4. When an op isn't in the lists, add it to black op set.
540 541
    5. Add necessary cast ops to make sure that black set op will be
       computed in fp32 mode, while white set op will be computed in
J
Jie Fang 已提交
542 543 544 545 546 547
       fp16 mode.

    Args:
        main_prog (Program): The main program for training.
    """
    block = main_prog.global_block()
F
fangshuixun007 已提交
548
    block._sync_with_cpp()
J
Jie Fang 已提交
549 550 551
    ops = block.ops
    white_op_set = set()
    black_op_set = set()
552
    for op in ops:
553

554 555
        # NOTE(zhiqiu): 'create_py_reader' and 'read' is used in non-iterable DataLoder,
        # we don't need to handle reader op and the input of 'create_py_reader' is not
556 557 558 559 560
        # in block, which may result in errors.
        # See GeneratorLoader._init_non_iterable() for details.
        if op.type == 'create_py_reader' or op.type == 'read':
            continue

561 562 563 564 565
        if amp_lists.black_varnames is not None and _is_in_black_varnames(
                op, amp_lists):
            black_op_set.add(op)
            continue

J
Jie Fang 已提交
566
        if op.type in amp_lists.black_list:
J
Jie Fang 已提交
567
            black_op_set.add(op)
J
Jie Fang 已提交
568
        elif op.type in amp_lists.white_list:
J
Jie Fang 已提交
569
            white_op_set.add(op)
J
Jie Fang 已提交
570
        elif op.type in amp_lists.gray_list:
J
Jie Fang 已提交
571 572 573 574 575 576 577 578 579 580
            is_black_op = False
            is_white_op = False
            for in_name in op.input_names:
                # if this op has inputs
                if in_name:
                    for in_var_name in op.input(in_name):
                        in_var = block.var(in_var_name)
                        # this in_var isn't the output of other op
                        if in_var.op is None:
                            continue
581 582 583 584
                        elif in_var.op is op:
                            prev_op = find_true_prev_op(ops, op, in_var_name)
                            if prev_op is None:
                                continue
J
Jie Fang 已提交
585 586 587 588
                        else:
                            prev_op = in_var.op
                        # if it's one of inputs
                        if prev_op in black_op_set or \
J
Jie Fang 已提交
589
                                prev_op.type in amp_lists.black_list:
J
Jie Fang 已提交
590
                            is_black_op = True
591
                        elif prev_op in white_op_set or \
J
Jie Fang 已提交
592
                                prev_op.type in amp_lists.white_list:
J
Jie Fang 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
                            is_white_op = True
            if is_black_op:
                black_op_set.add(op)
            elif is_white_op:
                white_op_set.add(op)
            else:
                pass
        else:
            # For numerical safe, we apply fp32 computation on ops that
            # are not determined which list they should stay.
            black_op_set.add(op)

    idx = 0
    while idx < len(ops):
        op = ops[idx]
        num_cast_ops = 0
        if op in black_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP16,
                                           core.VarDesc.VarType.FP32)
        elif op in white_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP32,
                                           core.VarDesc.VarType.FP16)
        else:
            pass

        idx += num_cast_ops + 1


623 624 625
def update_role_var_grad(main_prog, params_grads):
    """
    Update op_role_var attr for some ops to make sure the gradients
Z
Zhen Wang 已提交
626
    transferred across GPUs is FP16.
627 628 629 630 631 632 633 634 635 636
    1. Check whether the op that outputs gradient is cast or not.
    2. If op is cast and gradient is FP32, remove the op_role_var
       and find the prev op which outputs FP16 gradient
    3. Update the op_role_var of the prev op.

    Args:
        main_prog (Program): The main program for training.
        params_grads (list): A list of params and grads.
    """
    block = main_prog.global_block()
F
fangshuixun007 已提交
637
    block._sync_with_cpp()
638 639 640 641 642 643 644
    BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward
    OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
            role = op.attr('op_role')
            if role & int(BACKWARD) and op.has_attr('op_role_var'):
F
fangshuixun007 已提交
645
                op._remove_attr("op_role_var")
646 647 648 649 650 651 652 653 654 655 656 657 658
            else:
                raise ValueError("The cast op {0} must be in BACKWARD role "
                                 "and have op_role_var attr.".format(op))

            fp16_grad_name = op.input(op.input_names[0])[0]
            op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name)
            op_role_var_attr_name = \
                core.op_proto_and_checker_maker.kOpRoleVarAttrName()
            attr_val = [p.name, fp16_grad_name]
            if op_for_fp16_grad.has_attr(op_role_var_attr_name):
                attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name))
            op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val)

Z
Zhen Wang 已提交
659 660
            # Maximize the all_reduce overlap, and perform the cast
            # operation after gradients transfer.
661
            op._set_attr('op_role', OPTIMIZE)
M
mapingshuo 已提交
662 663 664 665
            # optimize op should stay behind forward and backward ops
            if op == block.ops[-1]:
                continue
            post_ops = find_true_post_op(block.ops, op, g.name)
666
            if post_ops:
M
mapingshuo 已提交
667 668 669
                raise ValueError("The cast op {0}'s output should not be"
                                 "used by a non-optimize op, however, it"
                                 "is used by {1}".format(op, post_ops[0]))
670
            # add new op in the python and cpp at the same time
M
mapingshuo 已提交
671 672
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(op.desc)
F
fangshuixun007 已提交
673 674 675 676 677 678 679 680
            new_op = framework.Operator(
                block=block,
                desc=new_op_desc,
                type=None,
                inputs=None,
                outputs=None,
                attrs=None)
            block.ops.append(new_op)
M
mapingshuo 已提交
681 682 683
            op_idx = find_op_index(block.desc, op.desc)
            if op_idx == -1:
                raise ValueError("The op {0} is not in program".format(op))
F
fangshuixun007 已提交
684 685
            block._remove_op(op_idx, sync=False)
    block._sync_with_cpp()