pooling.py 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.layer_helper import LayerHelper
from .. import functional as F
Z
zhiboniu 已提交
17
from .. import Layer
18

19 20
__all__ = []

21

Z
zhiboniu 已提交
22
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
23
    r"""
24
    This operation applies a 1D average pooling over an input signal composed
25
    of several input planes, based on the input, output_size, return_mask parameters.
26 27 28 29 30
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
31
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
32 33 34 35
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
36
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
37

W
Wei Shengyu 已提交
38 39
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
40
            it must contain an integer.
W
Wei Shengyu 已提交
41 42 43
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
44 45 46 47 48 49
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
50 51 52 53 54
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
55

56
    Shape:
W
Wei Shengyu 已提交
57 58 59 60
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
61

62 63
    Returns:
        A callable object of AvgPool1D.
L
Ligoml 已提交
64

65 66 67
    Examples:

        .. code-block:: python
68

W
Wei Shengyu 已提交
69 70 71
            import paddle
            import paddle.nn as nn
            import numpy as np
72

W
Wei Shengyu 已提交
73 74 75 76
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
77 78 79

    """

L
Ligoml 已提交
80 81 82 83 84 85 86 87 88
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        exclusive=True,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
89
        super(AvgPool1D, self).__init__()
90 91 92 93
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
94
        self.exclusive = exclusive
95 96 97
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
98 99 100 101 102 103 104 105 106
        out = F.avg_pool1d(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.exclusive,
            self.ceil_mode,
            self.name,
        )
107 108
        return out

109 110
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
111 112
            **self.__dict__
        )
113

114

Z
zhiboniu 已提交
115
class AvgPool2D(Layer):
116
    r"""
117 118 119 120
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
121

122
    Example:
W
Wei Shengyu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
138 139
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
140
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
141 142
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
143 144
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
145 146 147 148 149 150
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
151 152 153 154 155 156 157 158 159 160
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
161

162
    Shape:
W
Wei Shengyu 已提交
163 164 165 166
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
167

W
Wei Shengyu 已提交
168 169
    Returns:
        A callable object of AvgPool2D.
170

171 172
    Examples:
        .. code-block:: python
173

W
Wei Shengyu 已提交
174 175 176
            import paddle
            import paddle.nn as nn
            import numpy as np
177

W
Wei Shengyu 已提交
178 179 180
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
181
                                stride=2, padding=0)
W
Wei Shengyu 已提交
182 183
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
184 185 186

    """

L
Ligoml 已提交
187 188 189 190 191 192 193 194 195 196 197
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
198
        super(AvgPool2D, self).__init__()
199
        self.ksize = kernel_size
200 201 202
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
203
        self.exclusive = exclusive
204 205
        self.divisor = divisor_override
        self.data_format = data_format
206 207
        self.name = name

208
    def forward(self, x):
L
Ligoml 已提交
209 210 211 212 213 214 215 216 217 218 219
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
220

221 222
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
223 224
            **self.__dict__
        )
225

226

Z
zhiboniu 已提交
227
class AvgPool3D(Layer):
228
    """
229 230 231 232
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
233

W
Wei Shengyu 已提交
234 235
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
236 237 238
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
239
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
240 241
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
242 243
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
244 245 246 247 248 249
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
250 251 252 253 254 255 256
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
257
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
258 259
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
260

W
Wei Shengyu 已提交
261 262
    Returns:
        A callable object of AvgPool3D.
263 264

    Shape:
W
Wei Shengyu 已提交
265 266 267 268
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
269 270
    Examples:
        .. code-block:: python
271

W
Wei Shengyu 已提交
272 273 274
            import paddle
            import paddle.nn as nn
            import numpy as np
275

W
Wei Shengyu 已提交
276 277 278
            # avg pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
279
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
280 281
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
282

283 284
    """

L
Ligoml 已提交
285 286 287 288 289 290 291 292 293 294 295
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
296
        super(AvgPool3D, self).__init__()
297 298 299 300
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
301
        self.exclusive = exclusive
302 303
        self.divisor = divisor_override
        self.data_format = data_format
304 305
        self.name = name

306
    def forward(self, x):
L
Ligoml 已提交
307 308 309 310 311 312 313 314 315 316 317
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
318

319 320
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
321 322
            **self.__dict__
        )
323

324

Z
zhiboniu 已提交
325
class MaxPool1D(Layer):
326
    """
W
Wei Shengyu 已提交
327 328 329 330 331
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
332

333 334 335
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
336 337 338

    ..  math::

W
Wei Shengyu 已提交
339
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
340

W
Wei Shengyu 已提交
341 342
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
343
            it must contain an integer.
W
Wei Shengyu 已提交
344 345 346
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
347 348 349
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
350 351
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
352
            The default value is 0.
W
Wei Shengyu 已提交
353 354 355 356 357
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
358
    Returns:
W
Wei Shengyu 已提交
359
        A callable object of MaxPool1D.
360 361

    Raises:
362 363 364 365 366 367 368 369
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
W
Wei Shengyu 已提交
370 371 372 373
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
374 375

    Examples:
376

377 378
        .. code-block:: python

W
Wei Shengyu 已提交
379 380 381
            import paddle
            import paddle.nn as nn
            import numpy as np
382

W
Wei Shengyu 已提交
383 384 385 386
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
387

W
Wei Shengyu 已提交
388 389 390
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
391 392 393

    """

L
Ligoml 已提交
394 395 396 397 398 399 400 401 402
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
403
        super(MaxPool1D, self).__init__()
404 405 406 407
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
408
        self.return_mask = return_mask
409 410 411
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
412 413 414 415 416 417 418 419 420
        out = F.max_pool1d(
            input,
            self.kernel_size,
            self.stride,
            self.padding,
            self.return_mask,
            self.ceil_mode,
            self.name,
        )
421
        return out
422

423 424
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
425 426
            **self.__dict__
        )
427

428

Z
zhiboniu 已提交
429
class MaxPool2D(Layer):
430
    r"""
431
    This operation applies 2D max pooling over input feature based on the input,
432 433 434 435 436
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
452 453
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
454
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
455
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
456
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
457 458
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
459 460 461
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
462
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
463 464
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
465 466 467 468 469 470 471
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
472

W
Wei Shengyu 已提交
473 474
    Returns:
        A callable object of MaxPool2D.
475 476 477 478
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
479 480

    Shape:
W
Wei Shengyu 已提交
481 482 483 484
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
485

486 487
    Examples:
        .. code-block:: python
488

W
Wei Shengyu 已提交
489 490 491
            import paddle
            import paddle.nn as nn
            import numpy as np
492

W
Wei Shengyu 已提交
493 494 495
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
496
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
497 498
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
499

W
Wei Shengyu 已提交
500 501 502 503
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
504 505
    """

L
Ligoml 已提交
506 507 508 509 510 511 512 513 514 515
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
516
        super(MaxPool2D, self).__init__()
517 518 519
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
520
        self.return_mask = return_mask
521 522 523 524 525
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
526 527 528 529 530 531 532 533 534 535
        return F.max_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
536

537 538
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
539 540
            **self.__dict__
        )
541

542

Z
zhiboniu 已提交
543
class MaxPool3D(Layer):
544
    """
545
    This operation applies 3D max pooling over input features based on the input,
546
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
547 548
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
549

W
Wei Shengyu 已提交
550 551
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
552
            is a tuple or list, it must contain three integers,
553
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
554
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
555
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
556 557
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
558 559
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
560 561 562
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
563
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
564 565
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
566 567 568 569 570 571 572
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
573 574


W
Wei Shengyu 已提交
575 576
    Returns:
        A callable object of MaxPool3D.
577 578 579 580
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
581 582

    Shape:
W
Wei Shengyu 已提交
583 584 585 586
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
587

588 589
    Examples:
        .. code-block:: python
590

W
Wei Shengyu 已提交
591 592 593
            import paddle
            import paddle.nn as nn
            import numpy as np
594

W
Wei Shengyu 已提交
595 596 597
            # max pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
598
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
599 600
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
601

W
Wei Shengyu 已提交
602 603 604 605
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
606 607
    """

L
Ligoml 已提交
608 609 610 611 612 613 614 615 616 617
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
618
        super(MaxPool3D, self).__init__()
619 620 621
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
622
        self.return_mask = return_mask
623 624 625 626 627
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
628 629 630 631 632 633 634 635 636 637
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
638

639 640
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
641 642
            **self.__dict__
        )
643

644

Z
zhiboniu 已提交
645
class AdaptiveAvgPool1D(Layer):
646
    r"""
647

648 649 650 651 652
    A 1D adaptive average pooling over an input signal composed
    of several input planes, based on :attr:`output_size`.
    Input and output are in NCL format, where N is batch
    size, C is the number of channels and L is the length of the feature.
    The shape of output will be :math:`[N, C, output\_size]`.
653

654
    The formulation for average adaptive pool1d is
655 656 657

    ..  math::

658
        lstart &= \lfloor i * L_{in} / L_{out}\rfloor,
659

660
        lend &= \lceil(i + 1) * L_{in} / L_{out}\rceil,
661

662
        Output(i) &= \frac{\sum Input[lstart:lend]}{lend - lstart}.
663

W
Wei Shengyu 已提交
664
    Parameters:
665 666
        output_size(int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
667

668
    Returns:
669
        A callable object for computing 1D adaptive average pooling.
670

671 672
    Examples:
        .. code-block:: python
673

W
Wei Shengyu 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
694 695
    """

696
    def __init__(self, output_size, name=None):
C
cnn 已提交
697
        super(AdaptiveAvgPool1D, self).__init__()
698
        self.output_size = output_size
699 700
        self.name = name

701 702 703
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

704 705 706
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

707

Z
zhiboniu 已提交
708
class AdaptiveAvgPool2D(Layer):
709
    r"""
710 711 712 713 714 715 716 717

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
718
        hstart &= floor(i * H_{in} / H_{out})
719

W
Wei Shengyu 已提交
720
        hend &= ceil((i + 1) * H_{in} / H_{out})
721

W
Wei Shengyu 已提交
722
        wstart &= floor(j * W_{in} / W_{out})
723

W
Wei Shengyu 已提交
724
        wend &= ceil((j + 1) * W_{in} / W_{out})
725

W
Wei Shengyu 已提交
726
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
727 728 729


    Parameters:
W
Wei Shengyu 已提交
730
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
731 732
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
733
        data_format(str, optional): The data format of the input and output data. An optional string
734 735
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
736 737
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
738 739

    Shape:
W
Wei Shengyu 已提交
740 741 742 743
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
744 745

    Returns:
C
cnn 已提交
746
        A callable object of AdaptiveAvgPool2D.
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
768

769 770 771
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
772
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
773 774 775 776 777
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
778
        super(AdaptiveAvgPool2D, self).__init__()
779 780 781 782 783
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
784 785 786 787 788 789
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
790

791 792 793
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

794

Z
zhiboniu 已提交
795
class AdaptiveAvgPool3D(Layer):
796
    r"""
797 798 799 800 801 802 803 804

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
805
        dstart &= floor(i * D_{in} / D_{out})
806

W
Wei Shengyu 已提交
807
        dend &= ceil((i + 1) * D_{in} / D_{out})
808

W
Wei Shengyu 已提交
809
        hstart &= floor(j * H_{in} / H_{out})
810

W
Wei Shengyu 已提交
811
        hend &= ceil((j + 1) * H_{in} / H_{out})
812

W
Wei Shengyu 已提交
813
        wstart &= floor(k * W_{in} / W_{out})
814

W
Wei Shengyu 已提交
815
        wend &= ceil((k + 1) * W_{in} / W_{out})
816

W
Wei Shengyu 已提交
817 818
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
819 820 821


    Parameters:
W
Wei Shengyu 已提交
822
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
823 824
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
825
        data_format(str, optional): The data format of the input and output data. An optional string
826 827
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
828 829
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
830
    Shape:
W
Wei Shengyu 已提交
831 832 833 834
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
835 836

    Returns:
C
cnn 已提交
837
        A callable object of AdaptiveAvgPool3D.
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
862

863 864 865
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
866
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
867 868 869 870 871
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
872
        super(AdaptiveAvgPool3D, self).__init__()
873 874 875 876 877
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
878 879 880 881 882 883
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
884

885 886 887
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

888

Z
zhiboniu 已提交
889
class AdaptiveMaxPool1D(Layer):
890 891 892
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
893
    of several input planes, based on the input, output_size, return_mask parameters.
894 895 896 897 898 899 900 901
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
902
        lstart &= floor(i * L_{in} / L_{out})
903

W
Wei Shengyu 已提交
904
        lend &= ceil((i + 1) * L_{in} / L_{out})
905

W
Wei Shengyu 已提交
906
        Output(i) &= max(Input[lstart:lend])
907

W
Wei Shengyu 已提交
908 909 910 911
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
912
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
913 914
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
915
    Returns:
W
Wei Shengyu 已提交
916
        A callable object of AdaptiveMaxPool1D.
917 918 919 920 921

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
W
Wei Shengyu 已提交
922 923 924 925
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
926 927 928 929

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
955 956 957

    """

958
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
959
        super(AdaptiveMaxPool1D, self).__init__()
960
        self.output_size = output_size
961
        self.return_mask = return_mask
962 963 964
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
965 966 967
        return F.adaptive_max_pool1d(
            input, self.output_size, self.return_mask, self.name
        )
968

969
    def extra_repr(self):
L
Ligoml 已提交
970 971 972
        return 'output_size={}, return_mask={}'.format(
            self.output_size, self.return_mask
        )
973

974

Z
zhiboniu 已提交
975
class AdaptiveMaxPool2D(Layer):
976 977
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
978 979
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
980

981
    For adaptive max pool2d:
982

983
    ..  math::
984

W
Wei Shengyu 已提交
985
        hstart &= floor(i * H_{in} / H_{out})
986

W
Wei Shengyu 已提交
987
        hend &= ceil((i + 1) * H_{in} / H_{out})
988

W
Wei Shengyu 已提交
989
        wstart &= floor(j * W_{in} / W_{out})
990

W
Wei Shengyu 已提交
991
        wend &= ceil((j + 1) * W_{in} / W_{out})
992

W
Wei Shengyu 已提交
993
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
994

995
    Parameters:
W
Wei Shengyu 已提交
996 997 998 999 1000 1001 1002
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1003
    Shape:
W
Wei Shengyu 已提交
1004 1005 1006 1007
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
1008

1009
    Returns:
C
cnn 已提交
1010
        A callable object of AdaptiveMaxPool2D.
1011 1012
    Examples:
        .. code-block:: python
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1031

1032 1033
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
1034
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1035 1036 1037
            pool_out, indices = adaptive_max_pool(x = x)
    """

1038
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1039
        super(AdaptiveMaxPool2D, self).__init__()
1040
        self._output_size = output_size
1041
        self._return_mask = return_mask
1042 1043 1044
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1045 1046 1047 1048 1049 1050
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1051

1052
    def extra_repr(self):
L
Ligoml 已提交
1053 1054 1055
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1056

1057

Z
zhiboniu 已提交
1058
class AdaptiveMaxPool3D(Layer):
1059
    """
W
Wei Shengyu 已提交
1060 1061 1062
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1063

1064
    For adaptive max pool3d:
1065

1066
    ..  math::
1067

W
Wei Shengyu 已提交
1068
        dstart &= floor(i * D_{in} / D_{out})
1069

W
Wei Shengyu 已提交
1070
        dend &= ceil((i + 1) * D_{in} / D_{out})
1071

W
Wei Shengyu 已提交
1072
        hstart &= floor(j * H_{in} / H_{out})
1073

W
Wei Shengyu 已提交
1074
        hend &= ceil((j + 1) * H_{in} / H_{out})
1075

W
Wei Shengyu 已提交
1076
        wstart &= floor(k * W_{in} / W_{out})
1077

W
Wei Shengyu 已提交
1078
        wend &= ceil((k + 1) * W_{in} / W_{out})
1079

W
Wei Shengyu 已提交
1080
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1081

1082
    Parameters:
W
Wei Shengyu 已提交
1083 1084 1085 1086 1087 1088 1089
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1090
    Shape:
W
Wei Shengyu 已提交
1091 1092 1093 1094 1095
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1096
    Returns:
C
cnn 已提交
1097
        A callable object of AdaptiveMaxPool3D.
1098 1099
    Examples:
        .. code-block:: python
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1121

1122 1123
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1124
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1125 1126
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1127
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1128
            out, indices = pool(x)
1129
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1130

1131 1132
    """

1133
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1134
        super(AdaptiveMaxPool3D, self).__init__()
1135
        self._output_size = output_size
1136
        self._return_mask = return_mask
1137 1138 1139
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1140 1141 1142 1143 1144 1145
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1146 1147

    def extra_repr(self):
L
Ligoml 已提交
1148 1149 1150
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1151 1152


1153
class MaxUnPool1D(Layer):
1154
    r"""
1155 1156
    This API implements max unpooling 1d opereation.

L
Ligoml 已提交
1157 1158
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1159 1160 1161 1162
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
L
Ligoml 已提交
1163

1164 1165 1166 1167
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
L
Ligoml 已提交
1168

1169 1170 1171 1172 1173 1174
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1175
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

L
Ligoml 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCL",
        output_size=None,
        name=None,
    ):
1214 1215 1216 1217 1218 1219 1220 1221 1222
        super(MaxUnPool1D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        return F.max_unpool1d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1233 1234 1235 1236 1237

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1238
class MaxUnPool2D(Layer):
1239
    r"""
1240 1241
    This API implements max unpooling 2d opereation.

1242 1243 1244
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
L
Ligoml 已提交
1245

1246 1247 1248 1249 1250 1251 1252 1253

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1254
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

L
Ligoml 已提交
1276

1277 1278 1279

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1280

1281 1282 1283
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1284
        data = paddle.rand(shape=[1,1,6,6])
1285 1286 1287
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1288
        unpool_out = Unpool2D(pool_out, indices)
1289 1290 1291 1292
        # unpool_out shape: [1, 1, 6, 6]

    """

L
Ligoml 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCHW",
        output_size=None,
        name=None,
    ):
1302 1303 1304 1305 1306 1307 1308 1309 1310
        super(MaxUnPool2D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        return F.max_unpool2d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1321 1322 1323

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1324 1325 1326


class MaxUnPool3D(Layer):
1327
    r"""
1328 1329
    This API implements max unpooling 3d opereation.

L
Ligoml 已提交
1330 1331
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1332 1333 1334 1335
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
L
Ligoml 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

L
Ligoml 已提交
1348

1349 1350 1351 1352 1353 1354
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1355
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

L
Ligoml 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCDHW",
        output_size=None,
        name=None,
    ):
1394 1395 1396 1397 1398 1399 1400 1401 1402
        super(MaxUnPool3D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        return F.max_unpool3d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1413 1414 1415

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)