test_rnn_nets.py 12.3 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16

F
Feiyu Chan 已提交
17
paddle.set_default_dtype("float64")
18 19
import os
import tempfile
20
import unittest
F
Feiyu Chan 已提交
21

22
import numpy as np
F
Feiyu Chan 已提交
23
from convert import convert_params_for_net
24 25 26
from rnn_numpy import GRU, LSTM, SimpleRNN

from paddle.fluid.layers import sequence_mask
F
Feiyu Chan 已提交
27

28 29
bidirectional_list = ["bidirectional", "bidirect"]

F
Feiyu Chan 已提交
30 31 32

class TestSimpleRNN(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
33
        super().__init__("runTest")
F
Feiyu Chan 已提交
34 35
        self.time_major = time_major
        self.direction = direction
36
        self.num_directions = 2 if direction in bidirectional_list else 1
37
        self.place = place
F
Feiyu Chan 已提交
38 39

    def setUp(self):
40 41 42 43
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
44 45 46 47 48 49
        rnn1 = SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
        rnn2 = paddle.nn.SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
F
Feiyu Chan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
65
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
66 67 68 69 70 71 72 73 74 75 76 77
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
78
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

93
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
94 95 96
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
97
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
98 99
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
100 101 102 103

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
104 105 106
    def test_predict(self):
        predict_test_util(self.place, "SimpleRNN")

F
Feiyu Chan 已提交
107 108 109 110
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
111
        self.test_predict()
F
Feiyu Chan 已提交
112 113 114 115


class TestGRU(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
116
        super().__init__("runTest")
F
Feiyu Chan 已提交
117 118
        self.time_major = time_major
        self.direction = direction
119
        self.num_directions = 2 if direction in bidirectional_list else 1
120
        self.place = place
F
Feiyu Chan 已提交
121 122

    def setUp(self):
123 124 125 126
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
127 128 129 130 131 132
        rnn1 = GRU(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
        rnn2 = paddle.nn.GRU(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
F
Feiyu Chan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
148
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
149 150 151 152 153 154 155 156 157 158 159 160
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
161
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

176
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
177 178 179
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
180
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
181 182
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
183 184 185 186

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
187 188 189
    def test_predict(self):
        predict_test_util(self.place, "GRU")

F
Feiyu Chan 已提交
190 191 192 193
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
194
        self.test_predict()
F
Feiyu Chan 已提交
195 196 197 198


class TestLSTM(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
199
        super().__init__("runTest")
F
Feiyu Chan 已提交
200 201
        self.time_major = time_major
        self.direction = direction
202
        self.num_directions = 2 if direction in bidirectional_list else 1
203
        self.place = place
F
Feiyu Chan 已提交
204 205

    def setUp(self):
206 207 208 209
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
210 211 212 213 214 215
        rnn1 = LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
        rnn2 = paddle.nn.LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction
        )
F
Feiyu Chan 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)
        prev_c = np.random.randn(2 * self.num_directions, 4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
232 233 234 235
        y2, (h2, c2) = rnn2(
            paddle.to_tensor(x),
            (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)),
        )
F
Feiyu Chan 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (h1, c1) = rnn1(x)
249
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (h1, c1) = rnn1(x, sequence_length=sequence_length)

265
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
266 267 268
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
269
        y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
270 271
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
272 273 274 275 276

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

277
    def test_predict(self):
G
Guo Sheng 已提交
278
        predict_test_util(self.place, "LSTM")
279
        predict_test_util(self.place, "LSTM", False)
280

F
Feiyu Chan 已提交
281 282 283 284
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
285
        self.test_predict()
F
Feiyu Chan 已提交
286 287


288
def predict_test_util(place, mode, stop_gradient=True):
G
Guo Sheng 已提交
289 290 291 292 293 294
    place = paddle.set_device(place)
    paddle.seed(123)
    np.random.seed(123)

    class Net(paddle.nn.Layer):
        def __init__(self):
295
            super().__init__()
296 297 298
            self.rnn = getattr(paddle.nn, mode)(
                16, 32, 2, direction="bidirectional", dropout=0.1
            )
G
Guo Sheng 已提交
299 300 301 302 303

        def forward(self, input):
            return self.rnn(input)

    x = paddle.randn((4, 10, 16))
304
    x.stop_gradient = stop_gradient
G
Guo Sheng 已提交
305 306 307 308 309 310 311 312
    seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
    mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
    mask = paddle.unsqueeze(mask, [2])
    rnn = Net()
    y, _ = rnn(x)
    y = y * mask
    loss = paddle.mean(y)
    loss.backward()
313 314 315
    optimizer = paddle.optimizer.Adam(
        learning_rate=0.1, parameters=rnn.parameters()
    )
G
Guo Sheng 已提交
316 317 318 319 320 321 322 323
    optimizer.step()
    rnn.eval()
    y, _ = rnn(x)
    # `jit.to_static` would include a train_program, eval mode might cause
    # some errors currently, such as dropout grad op gets `is_test == True`.
    rnn.train()

    rnn = paddle.jit.to_static(
324 325
        rnn, [paddle.static.InputSpec(shape=[None, None, 16], dtype=x.dtype)]
    )
326 327 328 329
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(temp_dir.name, "./inference/%s_infer" % mode)

    paddle.jit.save(rnn, save_dirname)
G
Guo Sheng 已提交
330 331 332 333 334 335

    paddle.enable_static()

    new_scope = paddle.static.Scope()
    with paddle.static.scope_guard(new_scope):
        exe = paddle.static.Executor(place)
336 337 338 339 340 341 342 343 344 345
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = paddle.static.load_inference_model(save_dirname, exe)
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: x.numpy()},
            fetch_list=fetch_targets,
        )
G
Guo Sheng 已提交
346
        np.testing.assert_equal(
347 348
            y.numpy(), results[0]
        )  # eval results equal predict results
G
Guo Sheng 已提交
349 350
    paddle.disable_static()

351 352
    temp_dir.cleanup()

G
Guo Sheng 已提交
353

F
Feiyu Chan 已提交
354 355
def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
356 357 358
    devices = (
        ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() else ["cpu"]
    )
359
    for direction in ["forward", "bidirectional", "bidirect"]:
F
Feiyu Chan 已提交
360 361 362 363 364
        for time_major in [True, False]:
            for device in devices:
                for test_class in [TestSimpleRNN, TestLSTM, TestGRU]:
                    suite.addTest(test_class(time_major, direction, device))
    return suite
365

366

367 368
if __name__ == '__main__':
    unittest.main()