sgd.cc 4.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/gen/sgd.h"
#include <stddef.h>  // offsetof
17
#include <memory>
T
tensor-tang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#include <vector>
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace jit {
namespace gen {

void SgdJitCode::genCode() {
  preCode();
  constexpr int block = YMM_FLOAT_BLOCK;
  constexpr int max_num_regs = 7;
  const int num_block = w_ / block;
  const int num_groups = num_block / max_num_regs;
  const size_t block_size = sizeof(float) * block;
  const size_t width_size = w_ * sizeof(float);
  std::vector<int> groups(num_groups, max_num_regs);
  int rest_num_regs = num_block % max_num_regs;
  if (rest_num_regs > 0) {
    groups.push_back(rest_num_regs);
  }

  vbroadcastss(ymm_lr, ptr[param_lr]);
  // protect rdx
  mov(reg_ptr_grad_i, param_grad);
  mov(reg_ptr_rows_i, param_rows);

  mov(reg_rows_size_in_byte,
      qword[param_attr + offsetof(sgd_attr_t, selected_rows_size)]);
  mov(rax, sizeof(int64_t));
  mul(reg_rows_size_in_byte);
  mov(reg_rows_size_in_byte, rax);
  add(reg_rows_size_in_byte, reg_ptr_rows_i);

  Label l_next_row;
  L(l_next_row);
  {
    mov(reg_row, qword[reg_ptr_rows_i]);
    mov(rax, width_size);
    mul(reg_row);
    mov(reg_row, rax);

    mov(reg_ptr_param_i, param_param);
    mov(reg_ptr_out_i, param_out);
    add(reg_ptr_param_i, reg_row);
    add(reg_ptr_out_i, reg_row);

    size_t w_offset = 0;
    for (int num_regs : groups) {
      // load grad
      size_t inner_offfset = w_offset;
      for (int reg_i = 0; reg_i < num_regs; ++reg_i) {
        vmovups(ymm_t(reg_i), ptr[reg_ptr_grad_i + inner_offfset]);
        inner_offfset += block_size;
      }

      // load param
      inner_offfset = w_offset;
      for (int reg_i = 0; reg_i < num_regs; ++reg_i) {
        vmovups(ymm_t(reg_i + num_regs), ptr[reg_ptr_param_i + inner_offfset]);
        inner_offfset += block_size;
      }

      // compute out
      for (int reg_i = 0; reg_i < num_regs; ++reg_i) {
        vmulps(ymm_t(reg_i), ymm_t(reg_i), ymm_lr);
        vsubps(ymm_t(reg_i + num_regs), ymm_t(reg_i + num_regs), ymm_t(reg_i));
      }

      // save out
      inner_offfset = w_offset;
      for (int reg_i = 0; reg_i < num_regs; ++reg_i) {
        vmovups(ptr[reg_ptr_out_i + inner_offfset], ymm_t(reg_i + num_regs));
        inner_offfset += block_size;
      }
      w_offset += (block_size * num_regs);
    }

    add(reg_ptr_grad_i, width_size);
    add(reg_ptr_rows_i, sizeof(int64_t));
    cmp(reg_ptr_rows_i, reg_rows_size_in_byte);
    jl(l_next_row, T_NEAR);
  }

  postCode();
}

class SgdCreator : public JitCodeCreator<sgd_attr_t> {
 public:
108
  bool CanBeUsed(const sgd_attr_t& attr) const override {
T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    return platform::MayIUse(platform::avx) &&
           attr.grad_width % YMM_FLOAT_BLOCK == 0;
  }
  size_t CodeSize(const sgd_attr_t& attr) const override {
    return 96 + (attr.grad_width / YMM_FLOAT_BLOCK) * 32 * 8;
  }
  std::unique_ptr<GenBase> CreateJitCode(
      const sgd_attr_t& attr) const override {
    PADDLE_ENFORCE_EQ(attr.param_width, attr.grad_width);
    PADDLE_ENFORCE_LE(attr.selected_rows_size, attr.grad_height);
    PADDLE_ENFORCE_GE(attr.selected_rows_size, 0);
    return make_unique<SgdJitCode>(attr, CodeSize(attr));
  }
};

}  // namespace gen
}  // namespace jit
}  // namespace operators
}  // namespace paddle

namespace gen = paddle::operators::jit::gen;

REGISTER_JITKERNEL_GEN(kSgd, gen::SgdCreator);