test_conv3d_op.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28
def conv3d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_d, in_h, in_w = input.shape
    out_c, f_c, f_d, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
29
    sub_out_c = out_c // group
30

C
chengduoZH 已提交
31 32 33
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

M
minqiyang 已提交
34 35 36
    out_d = 1 + (in_d + 2 * pad[0] - (dilation[0] * (f_d - 1) + 1)) // stride[0]
    out_h = 1 + (in_h + 2 * pad[1] - (dilation[1] * (f_h - 1) + 1)) // stride[1]
    out_w = 1 + (in_w + 2 * pad[2] - (dilation[2] * (f_w - 1) + 1)) // stride[2]
C
chengduoZH 已提交
37

38 39
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
40 41 42 43
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

44 45 46 47
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ),
                               (pad[2], )),
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
48 49 50 51 52

    filter_dilation = np.zeros((out_c, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

53 54 55 56 57 58
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
59 60 61 62 63 64
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

                    f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                            sub_out_c, :, :, :, :]
65 66 67
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
68
                                   axis=(1, 2, 3, 4))
69 70 71 72

    return out


C
chengduoZH 已提交
73 74
class TestConv3dOp(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
75
        self.op_type = "conv3d"
76
        self.use_cudnn = False
K
Kexin Zhao 已提交
77 78
        self.dtype = np.float32
        self.init_kernel_type()
79
        self.init_group()
C
chengduoZH 已提交
80
        self.init_dilation()
81 82
        self.init_test_case()

C
chengduoZH 已提交
83 84 85
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
86 87
            'dilations': self.dilations,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
88
        }
K
Kexin Zhao 已提交
89 90 91

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
C
chengduoZH 已提交
92
        output = conv3d_forward_naive(input, filter, self.groups,
K
Kexin Zhao 已提交
93
                                      conv3d_param).astype(self.dtype)
C
chengduoZH 已提交
94

K
Kexin Zhao 已提交
95 96 97 98
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
C
chengduoZH 已提交
99
        self.attrs = {
100 101
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
102
            'groups': self.groups,
K
Kexin Zhao 已提交
103 104
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn
C
chengduoZH 已提交
105 106 107
        }
        self.outputs = {'Output': output}

108 109 110
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
111
    def test_check_output(self):
112
        if self.testcudnn():
113 114 115 116
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
117 118

    def test_check_grad(self):
K
Kexin Zhao 已提交
119 120
        if self.dtype == np.float16:
            return
121
        if self.testcudnn():
122 123 124 125 126 127 128 129 130
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
131

C
chengduoZH 已提交
132
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
133 134
        if self.dtype == np.float16:
            return
135
        if self.testcudnn():
136 137 138 139 140 141 142 143 144 145 146 147
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
148 149

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
150 151
        if self.dtype == np.float16:
            return
152
        if self.testcudnn():
153 154 155 156 157 158 159 160 161 162 163 164
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
165

166 167 168
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
169
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
170
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
171
        f_c = self.input_size[1] // self.groups
172 173
        self.filter_size = [6, f_c, 3, 3, 3]

C
chengduoZH 已提交
174 175 176
    def init_dilation(self):
        self.dilations = [1, 1, 1]

177
    def init_group(self):
C
chengduoZH 已提交
178 179
        self.groups = 1

K
Kexin Zhao 已提交
180 181
    def init_kernel_type(self):
        pass
182

C
chengduoZH 已提交
183

C
chengduoZH 已提交
184 185 186 187
class TestCase1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
188
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
189
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
190
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
191 192 193
        self.filter_size = [6, f_c, 3, 3, 3]


C
chengduoZH 已提交
194 195 196
class TestWithGroup1(TestConv3dOp):
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
197 198


C
chengduoZH 已提交
199
class TestWithGroup2(TestCase1):
200
    def init_group(self):
C
chengduoZH 已提交
201 202
        self.groups = 3

203

C
chengduoZH 已提交
204 205 206 207 208 209
class TestWith1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
210
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
211 212 213 214
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
215

C
chengduoZH 已提交
216 217 218
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
219

220 221 222 223 224 225
class TestWithInput1x1Filter1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 1, 1, 1]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
226
        f_c = self.input_size[1] // self.groups
227 228 229 230 231 232 233 234 235
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
236 237 238 239 240 241
class TestWithDilation(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
242
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
243 244 245 246 247 248 249
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
250

C
chengduoZH 已提交
251

K
Kexin Zhao 已提交
252
#----------------Conv3dCUDNN----------------
253
class TestCUDNN(TestConv3dOp):
K
Kexin Zhao 已提交
254
    def init_kernel_type(self):
255
        self.use_cudnn = True
K
Kexin Zhao 已提交
256 257 258 259 260 261 262 263 264 265 266 267


class TestFP16CUDNN(TestConv3dOp):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
268 269


270
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
271
    def init_kernel_type(self):
272
        self.use_cudnn = True
K
Kexin Zhao 已提交
273 274 275 276 277 278 279 280 281 282 283 284


class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
285 286


287
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
288
    def init_kernel_type(self):
289
        self.use_cudnn = True
K
Kexin Zhao 已提交
290 291 292 293 294 295 296 297 298 299 300 301


class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
302 303


304
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
305
    def init_kernel_type(self):
306
        self.use_cudnn = True
K
Kexin Zhao 已提交
307 308 309 310 311 312 313 314 315 316 317 318


class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
319 320


321
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
322
    def init_kernel_type(self):
323
        self.use_cudnn = True
K
Kexin Zhao 已提交
324 325 326 327 328 329 330 331 332 333 334 335


class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
336 337


338 339 340 341 342 343
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


武毅 已提交
344 345
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
346
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
347
#     def init_op_type(self):
348
#         self.op_type = "conv3d"
武毅 已提交
349

C
chengduoZH 已提交
350 351
if __name__ == '__main__':
    unittest.main()