NNPACKConvOp.cpp 9.5 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "nnpack.h"
16
#include "paddle/function/ConvOp.h"
H
hedaoyuan 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

DEFINE_bool(nnpack_allocate_outside,
            false,
            "Allocate and free workspace memory outside the NNPACK interface.");
DEFINE_int32(nnpack_num_threads,
             0,
             "The number of nnpack threads"
             "default: 0; 0 to disable threadpool.");

namespace paddle {

nnp_convolution_algorithm get_nnp_convolution_algorithm(
    const std::string& algorithm) {
  if (algorithm == "auto") {
    return nnp_convolution_algorithm_auto;
  } else if (algorithm == "ft8x8") {
    return nnp_convolution_algorithm_ft8x8;
  } else if (algorithm == "ft16x16") {
    return nnp_convolution_algorithm_ft16x16;
  } else if (algorithm == "wt8x8") {
    return nnp_convolution_algorithm_wt8x8;
  } else if (algorithm == "implicit-gemm") {
    return nnp_convolution_algorithm_implicit_gemm;
  } else if (algorithm == "direct") {
    return nnp_convolution_algorithm_direct;
  } else {
    return nnp_convolution_algorithm_auto;
  }
}

template <DeviceType Device>
class NNPACKConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
    CHECK_EQ(groups_, (size_t)1);
    algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
    // algorithm_ = nnp_convolution_algorithm_auto;
    transform_strategy_ = nnp_convolution_transform_strategy_compute;
    nnp_status status = nnp_initialize();
    CHECK_EQ(status, nnp_status_success);
    workspaceBuffer_ = nullptr;
    workspaceSize_ = 0;

    threadpool_ = nullptr;
    if (FLAGS_nnpack_num_threads) {
      threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
      VLOG(3) << "Number of threads "
              << pthreadpool_get_threads_count(threadpool_);
    }
  }

  ~NNPACKConvFunction() {
    if (threadpool_) {
      pthreadpool_destroy(threadpool_);
    }
  }

75 76
  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
H
hedaoyuan 已提交
77
    const TensorShape& input = inputs[0].shape();
78
    const TensorShape& filter = inputs[1].shape();
H
hedaoyuan 已提交
79
    const TensorShape& output = outputs[0].shape();
80 81 82
    checkShape(input, filter, output);
  }

H
hedaoyuan 已提交
83 84 85 86
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
87
    check(inputs, outputs);
H
hedaoyuan 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    // size_t outputHeight = output[2];
    // size_t outputWidth = output[3];

    nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
103 104 105 106
    nnp_padding padding = {.top = (size_t)paddingH(),
                           .right = (size_t)paddingW(),
                           .bottom = (size_t)paddingH(),
                           .left = (size_t)paddingW()};
H
hedaoyuan 已提交
107
    nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
108 109
    nnp_size outputSubsampling = {.width = (size_t)strideW(),
                                  .height = (size_t)strideH()};
H
hedaoyuan 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    float* inputData = inputs[0].data<float>();
    float* filterData = inputs[1].data<float>();
    float* outputData = outputs[0].data<float>();

    void* bufferPtr = nullptr;
    size_t* sizePtr = nullptr;
    size_t needSize;
    if (FLAGS_nnpack_allocate_outside) {
      if (batchSize == 1) {
        nnp_status status = nnp_convolution_inference(algorithm_,
                                                      transform_strategy_,
                                                      inputChannels,
                                                      outputChannels,
                                                      inputSize,
                                                      padding,
                                                      kernelSize,
                                                      outputSubsampling,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      &needSize,
                                                      nnp_activation_identity,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr);
        CHECK_EQ(status, nnp_status_success);
      } else {
        // only supports stride = 1
141 142
        CHECK_EQ(strideH(), 1);
        CHECK_EQ(strideW(), 1);
H
hedaoyuan 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        nnp_status status = nnp_convolution_output(algorithm_,
                                                   batchSize,
                                                   inputChannels,
                                                   outputChannels,
                                                   inputSize,
                                                   padding,
                                                   kernelSize,
                                                   nullptr,
                                                   nullptr,
                                                   nullptr,
                                                   nullptr,
                                                   nullptr,
                                                   &needSize,
                                                   nnp_activation_identity,
                                                   nullptr,
                                                   nullptr,
                                                   nullptr);
        CHECK_EQ(status, nnp_status_success);
      }

      LOG(INFO) << "workspace size is " << needSize;
      if (needSize > workspaceSize_) {
        workspaceSize_ = needSize;
        if (workspaceBuffer_) {
          free(workspaceBuffer_);
        } else {
          posix_memalign(&workspaceBuffer_, 64, needSize);
        }
      }

      if (needSize) {
        bufferPtr = workspaceBuffer_;
        sizePtr = &needSize;
      }
    }

    if (batchSize == 1) {
      nnp_status status =
          nnp_convolution_inference(algorithm_,
                                    transform_strategy_,
                                    inputChannels,
                                    outputChannels,
                                    inputSize,
                                    padding,
                                    kernelSize,
                                    outputSubsampling,
                                    inputData,
                                    filterData,
                                    nullptr, /* bias */
                                    outputData,
                                    bufferPtr,
                                    sizePtr,
                                    nnp_activation_identity,
                                    nullptr,
                                    threadpool_, /* threadpool */
                                    nullptr);
      CHECK_EQ(status, nnp_status_success);
    } else {
      // only supports stride = 1
202 203
      CHECK_EQ(strideH(), 1);
      CHECK_EQ(strideW(), 1);
H
hedaoyuan 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      nnp_status status = nnp_convolution_output(algorithm_,
                                                 batchSize,
                                                 inputChannels,
                                                 outputChannels,
                                                 inputSize,
                                                 padding,
                                                 kernelSize,
                                                 inputData,
                                                 filterData,
                                                 nullptr, /* bias */
                                                 outputData,
                                                 bufferPtr,
                                                 sizePtr,
                                                 nnp_activation_identity,
                                                 nullptr,
                                                 threadpool_, /* threadpool */
                                                 nullptr);
      CHECK_EQ(status, nnp_status_success);
    }
  }

private:
  nnp_convolution_algorithm algorithm_;
  nnp_convolution_transform_strategy transform_strategy_;
  void* workspaceBuffer_;
  size_t workspaceSize_;
  pthreadpool_t threadpool_;
};

REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);

}  // namespace paddle