test_paddle_save_load.py 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
import os
W
WeiXin 已提交
20
import sys
21
import six
22
from io import BytesIO
W
WeiXin 已提交
23

24 25 26
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
27 28 29 30
import paddle.fluid as fluid
from paddle.fluid.optimizer import Adam
import paddle.fluid.framework as framework
from test_imperative_base import new_program_scope
31
from paddle.optimizer.lr import LRScheduler
32 33 34 35 36 37 38 39 40

BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10

IMAGE_SIZE = 784
CLASS_NUM = 10

41 42 43 44
if six.PY2:
    LARGE_PARAM = 2**2
else:
    LARGE_PARAM = 2**26
45

46

47 48
def random_batch_reader():
    def _get_random_inputs_and_labels():
49
        np.random.seed(SEED)
50 51 52 53
        image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, CLASS_NUM - 1, (
            BATCH_SIZE,
            1, )).astype('int64')
54 55
        return image, label

56 57 58 59 60 61 62 63
    def __reader__():
        for _ in range(BATCH_NUM):
            batch_image, batch_label = _get_random_inputs_and_labels()
            batch_image = paddle.to_tensor(batch_image)
            batch_label = paddle.to_tensor(batch_label)
            yield batch_image, batch_label

    return __reader__
64 65 66 67 68 69 70 71 72 73 74


class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

    def forward(self, x):
        return self._linear(x)


75 76 77 78 79 80 81 82 83 84
class LayerWithLargeParameters(paddle.nn.Layer):
    def __init__(self):
        super(LayerWithLargeParameters, self).__init__()
        self._l = paddle.nn.Linear(10, LARGE_PARAM)

    def forward(self, x):
        y = self._l(x)
        return y


85 86 87 88 89 90 91 92 93 94
def train(layer, loader, loss_fn, opt):
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)
            loss.backward()
            opt.step()
            opt.clear_grad()


95 96 97 98 99 100 101 102 103 104 105
class TestSaveLoadLargeParameters(unittest.TestCase):
    def setUp(self):
        pass

    def test_large_parameters_paddle_save(self):
        # enable dygraph mode
        paddle.disable_static()
        # create network
        layer = LayerWithLargeParameters()
        save_dict = layer.state_dict()

106 107
        path = os.path.join("test_paddle_save_load_large_param_save",
                            "layer.pdparams")
108 109 110 111 112
        if six.PY2:
            protocol = 2
        else:
            protocol = 4
        paddle.save(save_dict, path, protocol=protocol)
113 114 115
        dict_load = paddle.load(path)
        # compare results before and after saving
        for key, value in save_dict.items():
116 117
            self.assertTrue(
                np.array_equal(dict_load[key].numpy(), value.numpy()))
118 119


W
WeiXin 已提交
120 121
class TestSaveLoadPickle(unittest.TestCase):
    def test_pickle_protocol(self):
122 123
        # enable dygraph mode
        paddle.disable_static()
W
WeiXin 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        # create network
        layer = LinearNet()
        save_dict = layer.state_dict()

        path = os.path.join("test_paddle_save_load_pickle_protocol",
                            "layer.pdparams")

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 2.0)

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 1)

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 5)

        protocols = [2, ]
        if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
            protocols += [3, 4]
        for protocol in protocols:
144
            paddle.save(save_dict, path, pickle_protocol=protocol)
W
WeiXin 已提交
145 146 147
            dict_load = paddle.load(path)
            # compare results before and after saving
            for key, value in save_dict.items():
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                self.assertTrue(
                    np.array_equal(dict_load[key].numpy(), value.numpy()))


class TestSaveLoadAny(unittest.TestCase):
    def set_zero(self, prog, place, scope=None):
        if scope is None:
            scope = fluid.global_scope()
        for var in prog.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                ten = scope.find_var(var.name).get_tensor()
                if ten is not None:
                    ten.set(np.zeros_like(np.array(ten)), place)
                    new_t = np.array(scope.find_var(var.name).get_tensor())
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

    def replace_static_save(self, program, model_path, pickle_protocol=2):
        with self.assertRaises(TypeError):
            program.state_dict(1)
        with self.assertRaises(TypeError):
            program.state_dict(scope=1)
        with self.assertRaises(ValueError):
            program.state_dict('x')
        state_dict_param = program.state_dict('param')
        paddle.save(state_dict_param, model_path + '.pdparams')
        state_dict_opt = program.state_dict('opt')
        paddle.save(state_dict_opt, model_path + '.pdopt')
        state_dict_all = program.state_dict()
        paddle.save(state_dict_opt, model_path + '.pdall')

    def replace_static_load(self, program, model_path):
        with self.assertRaises(TypeError):
            program.set_state_dict(1)
        state_dict_param = paddle.load(model_path + '.pdparams')
        state_dict_param['fake_var_name.@@'] = np.random.randn(1, 2)
        state_dict_param['static_x'] = 'UserWarning'
        program.set_state_dict(state_dict_param)
        state_dict_param['static_x'] = np.random.randn(1, 2)
        program.set_state_dict(state_dict_param)
        program.set_state_dict(state_dict_param)
        state_dict_opt = paddle.load(model_path + '.pdopt')
        program.set_state_dict(state_dict_opt)

    def test_replace_static_save_load(self):
        paddle.enable_static()
        with new_program_scope():
            x = paddle.static.data(
                name="static_x", shape=[None, IMAGE_SIZE], dtype='float32')
            z = paddle.static.nn.fc(x, 10)
            z = paddle.static.nn.fc(z, 10, bias_attr=False)
            loss = fluid.layers.reduce_mean(z)
            opt = Adam(learning_rate=1e-3)
            opt.minimize(loss)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            fake_inputs = np.random.randn(2, IMAGE_SIZE).astype('float32')
            exe.run(prog, feed={'static_x': fake_inputs}, fetch_list=[loss])
            base_map = {}
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                    base_map[var.name] = t
            path = os.path.join("test_replace_static_save_load", "model")
            # paddle.save, legacy paddle.fluid.load
            self.replace_static_save(prog, path)
            self.set_zero(prog, place)
            paddle.fluid.io.load(prog, path)
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, np.array(base_t)))
            # legacy paddle.fluid.save, paddle.load 
            paddle.fluid.io.save(prog, path)
            self.set_zero(prog, place)
            self.replace_static_load(prog, path)
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
            # test for return tensor
            path_vars = 'test_replace_save_load_return_tensor_static/model'
            for var in prog.list_vars():
                if var.persistable:
                    tensor = var.get_value(fluid.global_scope())
                    paddle.save(tensor, os.path.join(path_vars, var.name))
            with self.assertRaises(TypeError):
                var.get_value('fluid.global_scope()')
            with self.assertRaises(ValueError):
                x.get_value()
            with self.assertRaises(TypeError):
                x.set_value('1')
            fake_data = np.zeros([3, 2, 1, 2, 3])
            with self.assertRaises(TypeError):
                x.set_value(fake_data, '1')
            with self.assertRaises(ValueError):
                x.set_value(fake_data)
            with self.assertRaises(ValueError):
                var.set_value(fake_data)
            # set var to zero
            self.set_zero(prog, place)
            for var in prog.list_vars():
                if var.persistable:
                    tensor = paddle.load(
                        os.path.join(path_vars, var.name), return_numpy=False)
                    var.set_value(tensor)
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

    def test_paddle_save_load_v2(self):
        paddle.disable_static()
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

        class StepDecay(LRScheduler):
            def __init__(self,
                         learning_rate,
                         step_size,
                         gamma=0.1,
                         last_epoch=-1,
                         verbose=False):
                self.step_size = step_size
                self.gamma = gamma
                super(StepDecay, self).__init__(learning_rate, last_epoch,
                                                verbose)

            def get_lr(self):
                i = self.last_epoch // self.step_size
                return self.base_lr * (self.gamma**i)

284
        layer = LinearNet()
285 286 287 288 289 290 291
        inps = paddle.randn([2, IMAGE_SIZE])
        adam = opt.Adam(
            learning_rate=StepDecay(0.1, 1), parameters=layer.parameters())
        y = layer(inps)
        y.mean().backward()
        adam.step()
        state_dict = adam.state_dict()
292 293 294 295 296 297 298 299 300 301
        path = 'paddle_save_load_v2/model.pdparams'
        with self.assertRaises(TypeError):
            paddle.save(state_dict, path, use_binary_format='False')
        # legacy paddle.save, paddle.load
        paddle.framework.io._legacy_save(state_dict, path)
        load_dict_tensor = paddle.load(path, return_numpy=False)
        # legacy paddle.load, paddle.save
        paddle.save(state_dict, path)
        load_dict_np = paddle.framework.io._legacy_load(path)
        for k, v in state_dict.items():
302 303 304 305 306 307 308 309 310
            if isinstance(v, dict):
                self.assertTrue(v == load_dict_tensor[k])
            else:
                self.assertTrue(
                    np.array_equal(v.numpy(), load_dict_tensor[k].numpy()))
                if not np.array_equal(v.numpy(), load_dict_np[k]):
                    print(v.numpy())
                    print(load_dict_np[k])
                self.assertTrue(np.array_equal(v.numpy(), load_dict_np[k]))
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    def test_single_pickle_var_dygraph(self):
        # enable dygraph mode
        paddle.disable_static()
        layer = LinearNet()
        path = 'paddle_save_load_v2/var_dygraph'
        tensor = layer._linear.weight
        with self.assertRaises(ValueError):
            paddle.save(tensor, path, pickle_protocol='3')
        with self.assertRaises(ValueError):
            paddle.save(tensor, path, pickle_protocol=5)
        paddle.save(tensor, path)
        t_dygraph = paddle.load(path)
        np_dygraph = paddle.load(path, return_numpy=True)
        self.assertTrue(isinstance(t_dygraph, paddle.fluid.core.VarBase))
        self.assertTrue(np.array_equal(tensor.numpy(), np_dygraph))
        self.assertTrue(np.array_equal(tensor.numpy(), t_dygraph.numpy()))
        paddle.enable_static()
        lod_static = paddle.load(path)
        np_static = paddle.load(path, return_numpy=True)
        self.assertTrue(isinstance(lod_static, paddle.fluid.core.LoDTensor))
        self.assertTrue(np.array_equal(tensor.numpy(), np_static))
        self.assertTrue(np.array_equal(tensor.numpy(), np.array(lod_static)))

    def test_single_pickle_var_static(self):
        # enable static mode
        paddle.enable_static()
        with new_program_scope():
            # create network
            x = paddle.static.data(
                name="x", shape=[None, IMAGE_SIZE], dtype='float32')
            z = paddle.static.nn.fc(x, 128)
            loss = fluid.layers.reduce_mean(z)
            place = fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [IMAGE_SIZE, 128]:
                    tensor = var.get_value()
                    break
            scope = fluid.global_scope()
        origin_tensor = np.array(tensor)
        path = 'test_single_pickle_var_static/var'
        paddle.save(tensor, path)
        self.set_zero(prog, place, scope)
        # static load
        lod_static = paddle.load(path)
        np_static = paddle.load(path, return_numpy=True)
        # set_tensor(np.ndarray)
        var.set_value(np_static, scope)
        self.assertTrue(np.array_equal(origin_tensor, np.array(tensor)))
        # set_tensor(LoDTensor)
        self.set_zero(prog, place, scope)
        var.set_value(lod_static, scope)
        self.assertTrue(np.array_equal(origin_tensor, np.array(tensor)))
        # enable dygraph mode
        paddle.disable_static()
        var_dygraph = paddle.load(path)
        np_dygraph = paddle.load(path, return_numpy=True)
        self.assertTrue(np.array_equal(np.array(tensor), np_dygraph))
        self.assertTrue(np.array_equal(np.array(tensor), var_dygraph.numpy()))

    def test_dygraph_save_static_load(self):
        inps = np.random.randn(1, IMAGE_SIZE).astype('float32')
        path = 'test_dygraph_save_static_load/dy-static.pdparams'
        paddle.disable_static()
        with paddle.utils.unique_name.guard():
            layer = LinearNet()
            state_dict_dy = layer.state_dict()
            paddle.save(state_dict_dy, path)
        paddle.enable_static()
        with new_program_scope():
            layer = LinearNet()
            data = paddle.static.data(
                name='x_static_save', shape=(None, IMAGE_SIZE), dtype='float32')
            y_static = layer(data)
            program = paddle.static.default_main_program()
            place = fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            state_dict = paddle.load(path, keep_name_table=True)
            program.set_state_dict(state_dict)
            state_dict_param = program.state_dict("param")
            for name, tensor in state_dict_dy.items():
                self.assertTrue(
                    np.array_equal(tensor.numpy(),
                                   np.array(state_dict_param[tensor.name])))
W
WeiXin 已提交
403

404 405 406 407 408 409 410 411 412 413 414 415
    def test_save_load_complex_object_dygraph_save(self):
        paddle.disable_static()
        layer = paddle.nn.Linear(3, 4)
        state_dict = layer.state_dict()
        obj1 = [
            paddle.randn(
                [3, 4], dtype='float32'), np.random.randn(5, 6),
            ('fake_weight', np.ones(
                [7, 8], dtype='float32'))
        ]
        obj2 = {'k1': obj1, 'k2': state_dict, 'epoch': 123}
        obj3 = (paddle.randn(
416 417 418 419
            [5, 4], dtype='float32'), np.random.randn(3, 4).astype("float32"), {
                "state_dict": state_dict,
                "opt": state_dict
            })
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        obj4 = (np.random.randn(5, 6), (123, ))

        path1 = "test_save_load_any_complex_object_dygraph/obj1"
        path2 = "test_save_load_any_complex_object_dygraph/obj2"
        path3 = "test_save_load_any_complex_object_dygraph/obj3"
        path4 = "test_save_load_any_complex_object_dygraph/obj4"
        paddle.save(obj1, path1)
        paddle.save(obj2, path2)
        paddle.save(obj3, path3)
        paddle.save(obj4, path4)

        load_tensor1 = paddle.load(path1, return_numpy=False)
        load_tensor2 = paddle.load(path2, return_numpy=False)
        load_tensor3 = paddle.load(path3, return_numpy=False)
        load_tensor4 = paddle.load(path4, return_numpy=False)

        self.assertTrue(
            np.array_equal(load_tensor1[0].numpy(), obj1[0].numpy()))
        self.assertTrue(np.array_equal(load_tensor1[1], obj1[1]))
        self.assertTrue(np.array_equal(load_tensor1[2].numpy(), obj1[2][1]))
        for i in range(len(load_tensor1)):
            self.assertTrue(
                type(load_tensor1[i]) == type(load_tensor2['k1'][i]))
        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(v.numpy(), load_tensor2['k2'][k].numpy()))
        self.assertTrue(load_tensor2['epoch'] == 123)

        self.assertTrue(
            np.array_equal(load_tensor3[0].numpy(), obj3[0].numpy()))
        self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1]))

        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(load_tensor3[2]["state_dict"][k].numpy(),
                               v.numpy()))

        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(load_tensor3[2]["opt"][k].numpy(), v.numpy()))

        self.assertTrue(np.array_equal(load_tensor4[0].numpy(), obj4[0]))

        load_array1 = paddle.load(path1, return_numpy=True)
        load_array2 = paddle.load(path2, return_numpy=True)
        load_array3 = paddle.load(path3, return_numpy=True)
        load_array4 = paddle.load(path4, return_numpy=True)

        self.assertTrue(np.array_equal(load_array1[0], obj1[0].numpy()))
        self.assertTrue(np.array_equal(load_array1[1], obj1[1]))
        self.assertTrue(np.array_equal(load_array1[2], obj1[2][1]))
        for i in range(len(load_array1)):
            self.assertTrue(type(load_array1[i]) == type(load_array2['k1'][i]))
        for k, v in state_dict.items():
            self.assertTrue(np.array_equal(v.numpy(), load_array2['k2'][k]))
        self.assertTrue(load_array2['epoch'] == 123)

        self.assertTrue(np.array_equal(load_array3[0], obj3[0].numpy()))
        self.assertTrue(np.array_equal(load_array3[1], obj3[1]))

        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(load_array3[2]["state_dict"][k], v.numpy()))

        for k, v in state_dict.items():
            self.assertTrue(np.array_equal(load_array3[2]["opt"][k], v.numpy()))

        self.assertTrue(np.array_equal(load_array4[0], obj4[0]))

        # static mode
        paddle.enable_static()

        load_tensor1 = paddle.load(path1, return_numpy=False)
        load_tensor2 = paddle.load(path2, return_numpy=False)
        load_tensor3 = paddle.load(path3, return_numpy=False)
        load_tensor4 = paddle.load(path4, return_numpy=False)

        self.assertTrue(
            np.array_equal(np.array(load_tensor1[0]), obj1[0].numpy()))
        self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1]))
        self.assertTrue(np.array_equal(np.array(load_tensor1[2]), obj1[2][1]))

        for i in range(len(load_tensor1)):
            self.assertTrue(
                type(load_tensor1[i]) == type(load_tensor2['k1'][i]))
        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(v.numpy(), np.array(load_tensor2['k2'][k])))
        self.assertTrue(load_tensor2['epoch'] == 123)

        self.assertTrue(
            isinstance(load_tensor3[0], paddle.fluid.core.LoDTensor))
        self.assertTrue(
            np.array_equal(np.array(load_tensor3[0]), obj3[0].numpy()))
        self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1]))

        for k, v in state_dict.items():
            self.assertTrue(
                isinstance(load_tensor3[2]["state_dict"][k],
                           paddle.fluid.core.LoDTensor))
            self.assertTrue(
                np.array_equal(
                    np.array(load_tensor3[2]["state_dict"][k]), v.numpy()))

        for k, v in state_dict.items():
            self.assertTrue(
                isinstance(load_tensor3[2]["opt"][k],
                           paddle.fluid.core.LoDTensor))
            self.assertTrue(
                np.array_equal(np.array(load_tensor3[2]["opt"][k]), v.numpy()))

        self.assertTrue(load_tensor4[0], paddle.fluid.core.LoDTensor)
        self.assertTrue(np.array_equal(np.array(load_tensor4[0]), obj4[0]))

        load_array1 = paddle.load(path1, return_numpy=True)
        load_array2 = paddle.load(path2, return_numpy=True)
        load_array3 = paddle.load(path3, return_numpy=True)
        load_array4 = paddle.load(path4, return_numpy=True)

        self.assertTrue(np.array_equal(load_array1[0], obj1[0].numpy()))
        self.assertTrue(np.array_equal(load_array1[1], obj1[1]))
        self.assertTrue(np.array_equal(load_array1[2], obj1[2][1]))
        for i in range(len(load_array1)):
            self.assertTrue(type(load_array1[i]) == type(load_array2['k1'][i]))
        for k, v in state_dict.items():
            self.assertTrue(np.array_equal(v.numpy(), load_array2['k2'][k]))
        self.assertTrue(load_array2['epoch'] == 123)

        self.assertTrue(isinstance(load_array3[0], np.ndarray))
        self.assertTrue(np.array_equal(load_array3[0], obj3[0].numpy()))
        self.assertTrue(np.array_equal(load_array3[1], obj3[1]))

        for k, v in state_dict.items():
            self.assertTrue(
                np.array_equal(load_array3[2]["state_dict"][k], v.numpy()))

        for k, v in state_dict.items():
            self.assertTrue(np.array_equal(load_array3[2]["opt"][k], v.numpy()))

        self.assertTrue(np.array_equal(load_array4[0], obj4[0]))

    def test_save_load_complex_object_static_save(self):
        paddle.enable_static()
        with new_program_scope():
            # create network
            x = paddle.static.data(
                name="x", shape=[None, IMAGE_SIZE], dtype='float32')
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            z = paddle.static.nn.fc(z, 128, bias_attr=False)
            loss = fluid.layers.reduce_mean(z)
            place = fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())

            state_dict = prog.state_dict()
            keys = list(state_dict.keys())
            obj1 = [
                state_dict[keys[0]], np.random.randn(5, 6),
                ('fake_weight', np.ones(
                    [7, 8], dtype='float32'))
            ]
            obj2 = {'k1': obj1, 'k2': state_dict, 'epoch': 123}
            obj3 = (state_dict[keys[0]], np.ndarray(
                [3, 4], dtype="float32"), {
                    "state_dict": state_dict,
                    "opt": state_dict
                })
            obj4 = (np.ndarray([3, 4], dtype="float32"), )

            path1 = "test_save_load_any_complex_object_static/obj1"
            path2 = "test_save_load_any_complex_object_static/obj2"
            path3 = "test_save_load_any_complex_object_static/obj3"
            path4 = "test_save_load_any_complex_object_static/obj4"
            paddle.save(obj1, path1)
            paddle.save(obj2, path2)
            paddle.save(obj3, path3)
            paddle.save(obj4, path4)

            load_tensor1 = paddle.load(path1, return_numpy=False)
            load_tensor2 = paddle.load(path2, return_numpy=False)
            load_tensor3 = paddle.load(path3, return_numpy=False)
            load_tensor4 = paddle.load(path4, return_numpy=False)

            self.assertTrue(
                np.array_equal(np.array(load_tensor1[0]), np.array(obj1[0])))
            self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1]))
            self.assertTrue(
                np.array_equal(np.array(load_tensor1[2]), obj1[2][1]))
            for i in range(len(load_tensor1)):
                self.assertTrue(
                    type(load_tensor1[i]) == type(load_tensor2['k1'][i]))
            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(
                        np.array(v), np.array(load_tensor2['k2'][k])))
            self.assertTrue(load_tensor2['epoch'] == 123)

            self.assertTrue(isinstance(load_tensor3[0], fluid.core.LoDTensor))
            self.assertTrue(np.array_equal(np.array(load_tensor3[0]), obj3[0]))
            self.assertTrue(isinstance(load_tensor3[1], fluid.core.LoDTensor))
            self.assertTrue(np.array_equal(np.array(load_tensor3[1]), obj3[1]))

            for k, v in state_dict.items():
                self.assertTrue(
                    isinstance(load_tensor3[2]["state_dict"][k],
                               fluid.core.LoDTensor))
                self.assertTrue(
                    np.array_equal(
                        np.array(load_tensor3[2]["state_dict"][k]), np.array(
                            v)))

            for k, v in state_dict.items():
                self.assertTrue(
                    isinstance(load_tensor3[2]["opt"][k], fluid.core.LoDTensor))
                self.assertTrue(
                    np.array_equal(
                        np.array(load_tensor3[2]["opt"][k]), np.array(v)))

            self.assertTrue(isinstance(load_tensor4[0], fluid.core.LoDTensor))
            self.assertTrue(np.array_equal(np.array(load_tensor4[0]), obj4[0]))

            load_array1 = paddle.load(path1, return_numpy=True)
            load_array2 = paddle.load(path2, return_numpy=True)
            load_array3 = paddle.load(path3, return_numpy=True)
            load_array4 = paddle.load(path4, return_numpy=True)

            self.assertTrue(np.array_equal(load_array1[0], np.array(obj1[0])))
            self.assertTrue(np.array_equal(load_array1[1], obj1[1]))
            self.assertTrue(np.array_equal(load_array1[2], obj1[2][1]))
            for i in range(len(load_array1)):
                self.assertTrue(
                    type(load_array1[i]) == type(load_array2['k1'][i]))
            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(np.array(v), load_array2['k2'][k]))
            self.assertTrue(load_array2['epoch'] == 123)

            self.assertTrue(np.array_equal(load_array3[0], np.array(obj3[0])))
            self.assertTrue(np.array_equal(load_array3[1], obj3[1]))

            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(load_array3[2]["state_dict"][k], np.array(
                        v)))

            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(load_array3[2]["opt"][k], np.array(v)))

            self.assertTrue(np.array_equal(load_array4[0], obj4[0]))

            # dygraph mode
            paddle.disable_static()

            load_tensor1 = paddle.load(path1, return_numpy=False)
            load_tensor2 = paddle.load(path2, return_numpy=False)
            load_tensor3 = paddle.load(path3, return_numpy=False)
            load_tensor4 = paddle.load(path4, return_numpy=False)

            self.assertTrue(
                np.array_equal(np.array(load_tensor1[0]), np.array(obj1[0])))
            self.assertTrue(np.array_equal(np.array(load_tensor1[1]), obj1[1]))
            self.assertTrue(np.array_equal(load_tensor1[2].numpy(), obj1[2][1]))
            for i in range(len(load_tensor1)):
                self.assertTrue(
                    type(load_tensor1[i]) == type(load_tensor2['k1'][i]))
            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(
                        np.array(v), np.array(load_tensor2['k2'][k])))
            self.assertTrue(load_tensor2['epoch'] == 123)

            self.assertTrue(isinstance(load_tensor3[0], fluid.core.VarBase))
            self.assertTrue(np.array_equal(load_tensor3[0].numpy(), obj3[0]))
            self.assertTrue(isinstance(load_tensor3[1], fluid.core.VarBase))
            self.assertTrue(np.array_equal(load_tensor3[1].numpy(), obj3[1]))

            for k, v in state_dict.items():
                self.assertTrue(
                    isinstance(load_tensor3[2]["state_dict"][k],
                               fluid.core.VarBase))
                self.assertTrue(
                    np.array_equal(load_tensor3[2]["state_dict"][k].numpy(),
                                   np.array(v)))

            for k, v in state_dict.items():
                self.assertTrue(
                    isinstance(load_tensor3[2]["opt"][k], fluid.core.VarBase))
                self.assertTrue(
                    np.array_equal(load_tensor3[2]["opt"][k].numpy(),
                                   np.array(v)))

            self.assertTrue(isinstance(load_tensor4[0], fluid.core.VarBase))
            self.assertTrue(np.array_equal(load_tensor4[0].numpy(), obj4[0]))

            load_array1 = paddle.load(path1, return_numpy=True)
            load_array2 = paddle.load(path2, return_numpy=True)
            load_array3 = paddle.load(path3, return_numpy=True)
            load_array4 = paddle.load(path4, return_numpy=True)

            self.assertTrue(np.array_equal(load_array1[0], np.array(obj1[0])))
            self.assertTrue(np.array_equal(load_array1[1], obj1[1]))
            self.assertTrue(np.array_equal(load_array1[2], obj1[2][1]))
            for i in range(len(load_array1)):
                self.assertTrue(
                    type(load_array1[i]) == type(load_array2['k1'][i]))
            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(np.array(v), load_array2['k2'][k]))
            self.assertTrue(load_array2['epoch'] == 123)

            self.assertTrue(np.array_equal(load_array3[0], np.array(obj3[0])))
            self.assertTrue(np.array_equal(load_array3[1], obj3[1]))

            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(load_array3[2]["state_dict"][k], np.array(
                        v)))

            for k, v in state_dict.items():
                self.assertTrue(
                    np.array_equal(load_array3[2]["opt"][k], np.array(v)))

            self.assertTrue(isinstance(load_array4[0], np.ndarray))
            self.assertTrue(np.array_equal(load_array4[0], obj4[0]))

    def test_varbase_binary_var(self):
        paddle.disable_static()
        varbase = paddle.randn([3, 2], dtype='float32')
        path = 'test_paddle_save_load_varbase_binary_var/varbase'
        paddle.save(varbase, path, use_binary_format=True)
        load_array = paddle.load(path, return_numpy=True)
        load_tensor = paddle.load(path, return_numpy=False)
        origin_array = varbase.numpy()
        load_tensor_array = load_tensor.numpy()
        if paddle.fluid.core.is_compiled_with_cuda():
            fluid.core._cuda_synchronize(paddle.CUDAPlace(0))
        self.assertTrue(np.array_equal(origin_array, load_array))
        self.assertTrue(np.array_equal(origin_array, load_tensor_array))

W
WeiXin 已提交
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
class TestSaveLoadToMemory(unittest.TestCase):
    def test_dygraph_save_to_memory(self):
        paddle.disable_static()
        linear = LinearNet()
        state_dict = linear.state_dict()
        byio = BytesIO()
        paddle.save(state_dict, byio)
        tensor = paddle.randn([2, 3], dtype='float32')
        paddle.save(tensor, byio)
        byio.seek(0)
        # load state_dict
        dict_load = paddle.load(byio, return_numpy=True)
        for k, v in state_dict.items():
            self.assertTrue(np.array_equal(v.numpy(), dict_load[k]))
        # load tensor
        tensor_load = paddle.load(byio, return_numpy=True)
        self.assertTrue(np.array_equal(tensor_load, tensor.numpy()))

        with self.assertRaises(ValueError):
            paddle.save(4, 3)
        with self.assertRaises(ValueError):
            paddle.save(state_dict, '')
        with self.assertRaises(ValueError):
            paddle.fluid.io._open_file_buffer('temp', 'b')

    def test_static_save_to_memory(self):
        paddle.enable_static()
        with new_program_scope():
            # create network
            x = paddle.static.data(
                name="x", shape=[None, IMAGE_SIZE], dtype='float32')
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            z = paddle.static.nn.fc(z, 128, bias_attr=False)
            loss = fluid.layers.reduce_mean(z)
            place = fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())

            state_dict = prog.state_dict()
            keys = list(state_dict.keys())
            tensor = state_dict[keys[0]]

            byio = BytesIO()
            byio2 = BytesIO()
            paddle.save(prog, byio2)
            paddle.save(tensor, byio)
            paddle.save(state_dict, byio)
            byio.seek(0)
            byio2.seek(0)

            prog_load = paddle.load(byio2)
            self.assertTrue(prog.desc.serialize_to_string() ==
                            prog_load.desc.serialize_to_string())

            tensor_load = paddle.load(byio, return_numpy=True)
            self.assertTrue(np.array_equal(tensor_load, np.array(tensor)))

            state_dict_load = paddle.load(byio, return_numpy=True)
            for k, v in state_dict.items():
                self.assertTrue(np.array_equal(np.array(v), state_dict_load[k]))


829 830 831
class TestSaveLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
832
        paddle.disable_static()
833 834

        # config seed
C
cnn 已提交
835
        paddle.seed(SEED)
836 837 838 839 840 841 842 843 844 845
        paddle.framework.random._manual_program_seed(SEED)

    def build_and_train_model(self):
        # create network
        layer = LinearNet()
        loss_fn = nn.CrossEntropyLoss()

        adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

        # create data loader
846 847
        # TODO: using new DataLoader cause unknown Timeout on windows, replace it
        loader = random_batch_reader()
848 849 850 851 852 853 854 855

        # train
        train(layer, loader, loss_fn, adam)

        return layer, adam

    def check_load_state_dict(self, orig_dict, load_dict):
        for var_name, value in orig_dict.items():
856 857 858
            load_value = load_dict[var_name].numpy() if hasattr(
                load_dict[var_name], 'numpy') else np.array(load_dict[var_name])
            self.assertTrue(np.array_equal(value.numpy(), load_value))
859 860 861 862 863

    def test_save_load(self):
        layer, opt = self.build_and_train_model()

        # save
864 865
        layer_save_path = "test_paddle_save_load.linear.pdparams"
        opt_save_path = "test_paddle_save_load.linear.pdopt"
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        layer_state_dict = layer.state_dict()
        opt_state_dict = opt.state_dict()

        paddle.save(layer_state_dict, layer_save_path)
        paddle.save(opt_state_dict, opt_save_path)

        # load
        load_layer_state_dict = paddle.load(layer_save_path)
        load_opt_state_dict = paddle.load(opt_save_path)

        self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
        self.check_load_state_dict(opt_state_dict, load_opt_state_dict)

        # test save load in static mode
        paddle.enable_static()
881
        static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams"
882 883 884 885 886 887 888 889 890 891
        paddle.save(layer_state_dict, static_save_path)
        load_static_state_dict = paddle.load(static_save_path)
        self.check_load_state_dict(layer_state_dict, load_static_state_dict)

        # error test cases, some tests relay base test above
        # 1. test save obj not dict error
        test_list = [1, 2, 3]

        # 2. test save path format error
        with self.assertRaises(ValueError):
892
            paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/")
893 894 895

        # 3. test load path not exist error
        with self.assertRaises(ValueError):
896
            paddle.load("test_paddle_save_load.linear.params")
897 898 899

        # 4. test load old save path error
        with self.assertRaises(ValueError):
900
            paddle.load("test_paddle_save_load.linear")
901 902


W
WeiXin 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
class TestSaveLoadProgram(unittest.TestCase):
    def test_save_load_program(self):
        paddle.enable_static()
        with new_program_scope():
            layer = LinearNet()
            data = paddle.static.data(
                name='x_static_save', shape=(None, IMAGE_SIZE), dtype='float32')
            y_static = layer(data)
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            origin_main = main_program.desc.serialize_to_string()
            origin_startup = startup_program.desc.serialize_to_string()
            path1 = "test_paddle_save_load_program/main_program.pdmodel"
            path2 = "test_paddle_save_load_program/startup_program.pdmodel"
            paddle.save(main_program, path1)
            paddle.save(startup_program, path2)

        with new_program_scope():
            load_main = paddle.load(path1).desc.serialize_to_string()
            load_startup = paddle.load(path2).desc.serialize_to_string()
            self.assertTrue(origin_main == load_main)
            self.assertTrue(origin_startup == load_startup)


927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
class TestSaveLoadLayer(unittest.TestCase):
    def test_save_load_layer(self):
        if six.PY2:
            return

        paddle.disable_static()
        inps = paddle.randn([1, IMAGE_SIZE], dtype='float32')
        layer1 = LinearNet()
        layer2 = LinearNet()
        layer1.eval()
        layer2.eval()
        origin = (layer1(inps), layer2(inps))
        path = "test_save_load_layer_/layer.pdmodel"
        paddle.save((layer1, layer2), path)

        # static
        paddle.enable_static()
        with self.assertRaises(ValueError):
            paddle.load(path)
        # dygraph
        paddle.disable_static()

        loaded_layer = paddle.load(path)
        loaded_result = [l(inps) for l in loaded_layer]
        for i in range(len(origin)):
            self.assertTrue((origin[i] - loaded_result[i]).abs().max() < 1e-10)


955 956
if __name__ == '__main__':
    unittest.main()