logic.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15 16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_type
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19

20
# TODO: define logic functions of a tensor  
21 22 23 24 25 26 27 28 29
from ..fluid.layers import is_empty  #DEFINE_ALIAS
from ..fluid.layers import isfinite  #DEFINE_ALIAS
from ..fluid.layers import logical_and  #DEFINE_ALIAS
from ..fluid.layers import logical_not  #DEFINE_ALIAS
from ..fluid.layers import logical_or  #DEFINE_ALIAS
from ..fluid.layers import logical_xor  #DEFINE_ALIAS
from ..fluid.layers import reduce_all  #DEFINE_ALIAS
from ..fluid.layers import reduce_any  #DEFINE_ALIAS

30 31
__all__ = [
    'equal',
W
wawltor 已提交
32
    'equal_all',
33 34 35 36 37 38 39 40 41 42 43 44 45
    'greater_equal',
    'greater_than',
    'is_empty',
    'isfinite',
    'less_equal',
    'less_than',
    'logical_and',
    'logical_not',
    'logical_or',
    'logical_xor',
    'not_equal',
    'reduce_all',
    'reduce_any',
Z
Zhen Wang 已提交
46
    'allclose',
47
    #       'isnan'
48 49 50
]


W
wawltor 已提交
51
def equal_all(x, y, name=None):
52
    """
W
wawltor 已提交
53 54
	:alias_main: paddle.equal_all
	:alias: paddle.equal_all,paddle.tensor.equal_all,paddle.tensor.logic.equal_all
S
swtkiwi 已提交
55

56 57
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
58
    **NOTICE**: The output of this OP has no gradient.
59 60

    Args:
W
wawltor 已提交
61 62 63 64
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
65 66

    Returns:
W
wawltor 已提交
67
        Tensor: output Tensor, data type is bool, value is [False] or [True].
68 69 70 71 72 73

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle
W
wawltor 已提交
74 75 76 77 78 79 80 81 82 83
          import paddle.imperative as imperative

          paddle.enable_imperative()
          x = imperative.to_variable(np.array([1, 2, 3]))
          y = imperative.to_variable(np.array([1, 2, 3]))
          z = imperative.to_variable(np.array([1, 4, 3]))
          result1 = paddle.equal_all(x, y)
          print(result1.numpy()) # result1 = [True ]
          result2 = paddle.equal_all(x, z)
          print(result2.numpy()) # result2 = [False ]
84
    """
W
wawltor 已提交
85 86

    helper = LayerHelper("equal_all", **locals())
87 88
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
89 90
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
91
    return out
Z
Zhen Wang 已提交
92 93 94 95 96


@templatedoc()
def allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
97 98
	:alias_main: paddle.allclose
	:alias: paddle.allclose,paddle.tensor.allclose,paddle.tensor.logic.allclose
S
swtkiwi 已提交
99

Z
Zhen Wang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    ${comment}

    Args:
        input(inputtype):{input_comment}.
        other(othertype):{other_comment}.
        rtol(rtoltype,optional):{rtol_comment}.
        atol(atoltype,optional):{atol_comment}.
        equal_nan(equalnantype,optional):{equal_nan_comment}.
        name(STR, optional): The default value is None.
                        Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        ${out_comment}.

    Return Type:
        ${out_type}
        
    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          use_cuda = fluid.core.is_compiled_with_cuda()

          a = fluid.data(name="a", shape=[2], dtype='float32')
          b = fluid.data(name="b", shape=[2], dtype='float32')

          result = paddle.allclose(a, b, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          result_nan = paddle.allclose(a, b, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")

          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          x = np.array([10000., 1e-07]).astype("float32")
          y = np.array([10000.1, 1e-08]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([False]), array([False]))

          x = np.array([10000., 1e-08]).astype("float32")
          y = np.array([10000.1, 1e-09]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([ True]), array([ True]))

          x = np.array([1.0, float('nan')]).astype("float32")
          y = np.array([1.0, float('nan')]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([False]), array([ True]))
    """

    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': input, 'Other': other}
    outputs = {'Out': out}
    attrs = {'rtol': rtol, 'atol': atol, 'equal_nan': equal_nan}
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
178 179


W
wawltor 已提交
180 181
@templatedoc()
def equal(x, y, name=None):
182
    """
W
wawltor 已提交
183 184
	:alias_main: paddle.equal
	:alias: paddle.equal,paddle.tensor.equal,paddle.tensor.logic.equal
S
swtkiwi 已提交
185

186
    This layer returns the truth value of :math:`x == y` elementwise.
W
wawltor 已提交
187
    **NOTICE**: The output of this OP has no gradient.
188 189

    Args:
W
wawltor 已提交
190 191
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
192 193 194 195
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
196
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
197 198 199 200 201 202
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

          import numpy as np
W
wawltor 已提交
203 204 205 206 207 208 209 210
          import paddle
          import paddle.imperative as imperative

          paddle.enable_imperative()
          x = imperative.to_variable(np.array([1, 2, 3]))
          y = imperative.to_variable(np.array([1, 3, 2]))
          result1 = paddle.equal(x, y)
          print(result1.numpy())  # result1 = [True False False]
211
    """
W
wawltor 已提交
212 213
    out = fluid.layers.equal(x, y, name=name, cond=None)
    return out
214

W
wawltor 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

@templatedoc()
def greater_equal(x, y, name=None):
    """
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal

    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.imperative as imperative

            paddle.enable_imperative()
            x = imperative.to_variable(np.array([1, 2, 3]))
            y = imperative.to_variable(np.array([1, 3, 2]))
            result1 = paddle.greater_equal(x, y)
            print(result1.numpy())  # result1 = [True False True]
    """
    out = fluid.layers.greater_equal(x, y, name=name, cond=None)
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than

    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.imperative as imperative

            paddle.enable_imperative()
            x = imperative.to_variable(np.array([1, 2, 3]))
            y = imperative.to_variable(np.array([1, 3, 2]))
            result1 = paddle.greater_than(x, y)
            print(result1.numpy())  # result1 = [False False True]
    """
    out = fluid.layers.greater_than(x, y, name=name, cond=None)
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal

    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.imperative as imperative

            paddle.enable_imperative()
            x = imperative.to_variable(np.array([1, 2, 3]))
            y = imperative.to_variable(np.array([1, 3, 2]))
            result1 = paddle.less_equal(x, y)
            print(result1.numpy())  # result1 = [True True False]
    """
    out = fluid.layers.less_equal(x, y, name=name, cond=None)
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    :alias_main: paddle.less_than
	:alias: paddle.less_than,paddle.tensor.less_than,paddle.tensor.logic.less_than

    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.imperative as imperative

            paddle.enable_imperative()
            x = imperative.to_variable(np.array([1, 2, 3]))
            y = imperative.to_variable(np.array([1, 3, 2]))
            result1 = paddle.less_than(x, y)
            print(result1.numpy())  # result1 = [False True False]
    """
    out = fluid.layers.less_than(x, y, force_cpu=False, name=name, cond=None)
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal

    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.imperative as imperative

            paddle.enable_imperative()
            x = imperative.to_variable(np.array([1, 2, 3]))
            y = imperative.to_variable(np.array([1, 3, 2]))
            result1 = paddle.not_equal(x, y)
            print(result1.numpy())  # result1 = [False True True]
    """
    out = fluid.layers.not_equal(x, y, name=name, cond=None)
381
    return out