jitcode.h 3.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include <type_traits>
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/gen_base.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
21 22 23 24 25 26 27

#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"

namespace paddle {
namespace operators {
T
tensor-tang 已提交
28 29
namespace jit {
namespace gen {
T
tensor-tang 已提交
30 31 32 33

// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
    abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
34 35
    abi_param4(Xbyak::Operand::RCX), abi_param5(Xbyak::Operand::R8),
    abi_param6(Xbyak::Operand::R9);
T
tensor-tang 已提交
36

T
tensor-tang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50
constexpr Xbyak::Operand::Code g_abi_regs[] = {
    Xbyak::Operand::RBX, Xbyak::Operand::RBP, Xbyak::Operand::R12,
    Xbyak::Operand::R13, Xbyak::Operand::R14, Xbyak::Operand::R15};

constexpr int num_g_abi_regs = sizeof(g_abi_regs) / sizeof(g_abi_regs[0]);

using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;

typedef enum {
51
  MUL = 0,
T
tensor-tang 已提交
52
  MAX,
53 54 55 56
  ADD,
  SUB,
  RELU,
  EXP,
T
tensor-tang 已提交
57
  SQUARE,
58 59 60
  SIGMOID,
  TANH,
  IDENTITY
T
tensor-tang 已提交
61 62 63
} operand_type;

#define DECLARE_JIT_CODE(codename) \
T
tensor-tang 已提交
64
  std::string name() const override { return #codename; }
T
tensor-tang 已提交
65

T
tensor-tang 已提交
66
class JitCode : public GenBase, public Xbyak::CodeGenerator {
T
tensor-tang 已提交
67
 public:
T
tensor-tang 已提交
68
  explicit JitCode(size_t code_size, void* code_ptr = nullptr)
T
tensor-tang 已提交
69 70 71
      : Xbyak::CodeGenerator(
            (code_size % 4096 != 0 ? (code_size / 4096 + 1) * 4096 : code_size),
            code_ptr) {}
T
tensor-tang 已提交
72 73

  virtual void genCode() = 0;
T
tensor-tang 已提交
74

T
tensor-tang 已提交
75
  size_t getSize() const override { return CodeGenerator::getSize(); }
76
  const unsigned char* getCodeInternal() const override {
T
tensor-tang 已提交
77 78 79
    const Xbyak::uint8* code = CodeGenerator::getCode();
    return code;
  }
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89

 protected:
  Xbyak::Reg64 param1{abi_param1};
  const int EVEX_max_8b_offt = 0x200;
  const Xbyak::Reg64 reg_EVEX_max_8b_offt = rbp;

  virtual void preCode() {
    for (int i = 0; i < num_g_abi_regs; ++i) {
      push(Xbyak::Reg64(g_abi_regs[i]));
    }
T
tensor-tang 已提交
90
    if (platform::MayIUse(platform::avx512f)) {
T
tensor-tang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
      mov(reg_EVEX_max_8b_offt, 2 * EVEX_max_8b_offt);
    }
  }
  virtual void postCode() {
    for (int i = 0; i < num_g_abi_regs; ++i) {
      pop(Xbyak::Reg64(g_abi_regs[num_g_abi_regs - 1 - i]));
    }
    ret();
  }
  void L(const char* label) { Xbyak::CodeGenerator::L(label); }
  void L(const Xbyak::Label& label) { Xbyak::CodeGenerator::L(label); }
  // Enhanced vector extension
  Xbyak::Address EVEX_compress_addr(Xbyak::Reg64 base, int offt,
                                    bool bcast = false) {
    int scale = 0;
    // Learn from https://github.com/intel/mkl-dnn
    if (EVEX_max_8b_offt <= offt && offt < 3 * EVEX_max_8b_offt) {
      offt = offt - 2 * EVEX_max_8b_offt;
      scale = 1;
    } else if (3 * EVEX_max_8b_offt <= offt && offt < 5 * EVEX_max_8b_offt) {
      offt = offt - 4 * EVEX_max_8b_offt;
      scale = 2;
    }
    auto re = Xbyak::RegExp() + base + offt;
    if (scale) {
      re = re + reg_EVEX_max_8b_offt * scale;
    }
    if (bcast) {
      return zword_b[re];
    } else {
      return zword[re];
    }
  }
T
tensor-tang 已提交
124 125
};

T
tensor-tang 已提交
126 127
}  // namespace gen
}  // namespace jit
T
tensor-tang 已提交
128 129
}  // namespace operators
}  // namespace paddle