common_graph_table.h 19.2 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
S
seemingwang 已提交
20 21 22 23 24 25
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
26
#include <list>
S
seemingwang 已提交
27
#include <map>
S
seemingwang 已提交
28 29
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
30 31 32
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
33
#include <string>
S
seemingwang 已提交
34
#include <thread>
S
seemingwang 已提交
35
#include <unordered_map>
S
seemingwang 已提交
36
#include <unordered_set>
S
seemingwang 已提交
37 38
#include <utility>
#include <vector>
39 40
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
41
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
42
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
43
#include "paddle/fluid/string/string_helper.h"
44
#include "paddle/phi/core/utils/rw_lock.h"
45

46
#ifdef PADDLE_WITH_HETERPS
Z
zhaocaibei123 已提交
47
#include "paddle/fluid/distributed/ps/table/depends/rocksdb_warpper.h"
48 49
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
50 51 52 53 54 55
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
56
  ~GraphShard();
S
seemingwang 已提交
57 58
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
59 60
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
61
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
62 63 64 65
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
S
seemingwang 已提交
66

67
  GraphNode *add_graph_node(int64_t id);
68
  GraphNode *add_graph_node(Node *node);
69 70 71
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
72
  void clear();
73 74
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
75 76 77 78
    return node_location;
  }

 private:
79
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
80 81
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
82 83 84 85

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
86
  int64_t node_key;
S
seemingwang 已提交
87
  size_t sample_size;
88
  bool is_weighted;
89
  SampleKey(int64_t _node_key, size_t _sample_size, bool _is_weighted)
90 91 92
      : node_key(_node_key),
        sample_size(_sample_size),
        is_weighted(_is_weighted) {}
S
seemingwang 已提交
93
  bool operator==(const SampleKey &s) const {
94 95
    return node_key == s.node_key && sample_size == s.sample_size &&
           is_weighted == s.is_weighted;
S
seemingwang 已提交
96 97 98 99 100 101
  }
};

class SampleResult {
 public:
  size_t actual_size;
102 103 104 105 106 107 108
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
123
template <typename K, typename V>
S
seemingwang 已提交
124 125
class ScaledLRU;

126
template <typename K, typename V>
S
seemingwang 已提交
127 128
class RandomSampleLRU {
 public:
129 130 131
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
132 133 134
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
135
    total_diff = 0;
S
seemingwang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
149 150 151 152 153 154 155 156 157 158 159 160 161 162
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
163 164
        }
      }
165 166 167 168 169
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
170 171 172 173 174 175 176
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
177 178 179 180 181 182 183 184 185 186 187 188
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
189 190
      }
    }
191 192 193 194 195 196
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
197 198 199
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
200 201
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
202
    node_size--;
203 204
    key_map.erase(node->key);
    delete node;
205 206 207
  }

  void process_redundant(int process_size) {
208
    int length = std::min(remove_count, process_size);
209 210 211
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
212
    }
213
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
214 215
  }

216 217 218 219 220 221 222 223 224 225 226 227
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
228 229 230 231 232 233 234 235 236 237 238
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

239 240 241 242 243 244 245 246 247 248 249 250 251
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
252
 private:
253 254
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
255
  size_t global_ttl, size_limit;
256
  int node_size, total_diff;
S
seemingwang 已提交
257
  LRUNode<K, V> *node_head, *node_end;
258
  friend class ScaledLRU<K, V>;
259
  int remove_count;
S
seemingwang 已提交
260 261
};

262
template <typename K, typename V>
S
seemingwang 已提交
263 264
class ScaledLRU {
 public:
265
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
266
      : size_limit(size_limit), ttl(_ttl) {
267
    shard_num = _shard_num;
S
seemingwang 已提交
268 269 270 271
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
272 273
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
274 275 276 277
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
278
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
279 280 281 282 283
          if (stop) {
            return;
          }
        }
        auto status =
Z
zhaocaibei123 已提交
284
            thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
  LRUResponse query(size_t index, K *keys, size_t length,
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
Z
zhaocaibei123 已提交
302
  int Shrink() {
S
seemingwang 已提交
303 304
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
305
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
306 307
    }

308
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
309
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
310 311 312 313
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
314
      if ((size_t)global_count > size_limit) {
315
        size_t remove = global_count - size_limit;
316
        for (size_t i = 0; i < lru_pool.size(); i++) {
317 318 319 320
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
321 322 323 324 325 326 327
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
328

S
seemingwang 已提交
329 330 331
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
332
      if (global_count > int(1.25 * size_limit)) {
Z
zhaocaibei123 已提交
333
        thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
334 335 336 337 338 339 340 341
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
342
  size_t shard_num;
S
seemingwang 已提交
343
  int global_count;
344
  size_t size_limit, total, hit;
S
seemingwang 已提交
345 346 347
  size_t ttl;
  bool stop;
  std::thread shrink_job;
348
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
349 350 351
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
352
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
353 354
};

355
/*
356 357 358 359 360 361 362 363 364 365 366 367
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
368 369 370
  virtual int loadData(const std::string &path){
    return 0;
  }
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif
411
*/
412

413
class GraphTable : public Table {
S
seemingwang 已提交
414
 public:
415 416 417 418 419
  GraphTable() {
    use_cache = false;
    shard_num = 0;
    rw_lock.reset(new pthread_rwlock_t());
  }
420
  virtual ~GraphTable();
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

  virtual void *GetShard(size_t shard_idx) { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

  static size_t get_sparse_shard(uint32_t shard_num, uint32_t server_num,
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }

S
seemingwang 已提交
438 439 440 441 442
  virtual int32_t pull_graph_list(int start, int size,
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

443
  virtual int32_t random_sample_neighbors(
444
      int64_t *node_ids, int sample_size,
445
      std::vector<std::shared_ptr<char>> &buffers,
446
      std::vector<int> &actual_sizes, bool need_weight);
S
seemingwang 已提交
447 448 449 450 451

  int32_t random_sample_nodes(int sample_size, std::unique_ptr<char[]> &buffers,
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
452
      std::vector<std::pair<int, int>> ranges, std::vector<int64_t> &res);
Z
zhaocaibei123 已提交
453 454
  virtual int32_t Initialize() { return 0; }
  virtual int32_t Initialize(const TableParameter &config,
455
                             const FsClientParameter &fs_config);
Z
zhaocaibei123 已提交
456 457
  virtual int32_t Initialize(const GraphParameter &config);
  int32_t Load(const std::string &path, const std::string &param);
458
  int32_t load_graph_split_config(const std::string &path);
S
seemingwang 已提交
459 460 461 462 463

  int32_t load_edges(const std::string &path, bool reverse);

  int32_t load_nodes(const std::string &path, std::string node_type);

464
  int32_t add_graph_node(std::vector<int64_t> &id_list,
465 466
                         std::vector<bool> &is_weight_list);

467
  int32_t remove_graph_node(std::vector<int64_t> &id_list);
468

469 470
  int32_t get_server_index_by_id(int64_t id);
  Node *find_node(int64_t id);
S
seemingwang 已提交
471

Y
yaoxuefeng 已提交
472 473 474
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

475
  virtual int32_t clear_nodes();
Z
zhaocaibei123 已提交
476 477 478
  virtual void Clear() {}
  virtual int32_t Flush() { return 0; }
  virtual int32_t Shrink(const std::string &param) { return 0; }
S
seemingwang 已提交
479
  //指定保存路径
Z
zhaocaibei123 已提交
480
  virtual int32_t Save(const std::string &path, const std::string &converter) {
S
seemingwang 已提交
481 482
    return 0;
  }
Z
zhaocaibei123 已提交
483 484
  virtual int32_t InitializeShard() { return 0; }
  virtual int32_t SetShard(size_t shard_idx, size_t server_num) {
485 486 487 488 489 490 491 492 493 494 495 496
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
S
seemingwang 已提交
497 498
  virtual std::pair<int32_t, std::string> parse_feature(std::string feat_str);

499
  virtual int32_t get_node_feat(const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
500 501 502
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
503
  virtual int32_t set_node_feat(
504
      const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
505 506 507
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
508 509
  size_t get_server_num() { return server_num; }

510
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
511 512 513
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
514
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
515
            task_pool_size_, size_limit, ttl));
516 517 518 519 520
        use_cache = true;
      }
    }
    return 0;
  }
521
#ifdef PADDLE_WITH_HETERPS
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  // virtual int32_t start_graph_sampling() {
  //   return this->graph_sampler->start_graph_sampling();
  // }
  // virtual int32_t end_graph_sampling() {
  //   return this->graph_sampler->end_graph_sampling();
  // }
  // virtual int32_t set_graph_sample_callback(
  //     std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
  //         callback) {
  //   graph_sampler->set_graph_sample_callback(callback);
  //   return 0;
  // }
  virtual char *random_sample_neighbor_from_ssd(
      int64_t id, int sample_size, const std::shared_ptr<std::mt19937_64> rng,
      int &actual_size);
  virtual int32_t add_node_to_ssd(int64_t id, char *data, int len);
  virtual paddle::framework::GpuPsCommGraph make_gpu_ps_graph(
      std::vector<int64_t> ids);
  // virtual GraphSampler *get_graph_sampler() { return graph_sampler.get(); }
  int search_level;
542
#endif
543
  virtual int32_t add_comm_edge(int64_t src_id, int64_t dst_id);
544
  std::vector<GraphShard *> shards, extra_shards;
S
seemingwang 已提交
545
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
546
  int task_pool_size_ = 24;
S
seemingwang 已提交
547 548 549 550 551 552 553 554 555 556
  const int random_sample_nodes_ranges = 3;

  std::vector<std::string> feat_name;
  std::vector<std::string> feat_dtype;
  std::vector<int32_t> feat_shape;
  std::unordered_map<std::string, int32_t> feat_id_map;
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
557
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
558
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
559 560
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
561
  bool use_cache, use_duplicate_nodes;
562 563
  int cache_size_limit;
  int cache_ttl;
564
  mutable std::mutex mutex_;
565 566 567
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
568 569 570 571
  paddle::distributed::RocksDBHandler *_db;
// std::shared_ptr<::ThreadPool> graph_sample_pool;
// std::shared_ptr<GraphSampler> graph_sampler;
// REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
572 573 574
#endif
};

575
/*
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
611
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
612 613 614
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
615
};
616
#endif
617
*/
618
}  // namespace distributed
619

620
};  // namespace paddle
621 622 623 624 625 626 627 628 629 630

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
    return s.node_key ^ s.sample_size;
  }
};
}