quantize_transpiler.py 21.1 KB
Newer Older
D
Dang Qingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import numpy as np

from paddle.fluid.framework import default_main_program, default_startup_program, program_guard
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid import unique_name
21
from paddle.fluid import core
D
Dang Qingqing 已提交
22 23 24 25
from paddle.fluid.initializer import Constant
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.nn import autoincreased_step_counter
26 27 28 29 30
from paddle.fluid.framework import Variable
from paddle.fluid.executor import global_scope
from paddle.fluid.transpiler.inference_transpiler import InferenceTranspiler

__all__ = ['QuantizeTranspiler']
D
Dang Qingqing 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

_QUANTIZABLE_OP_TYPES = ['conv2d', 'depthwise_conv2d', 'mul']


def _quantized_var_name(var_name):
    """
    Return quantized variable name for the input `var_name`.
    """
    return "%s.quantized" % (var_name)


def _dequantized_var_name(var_name):
    """
    Return dequantized variable name for the input `var_name`.
    """
    return "%s.dequantized" % (var_name)


def _quantized_scale_name(var_name):
    """
    Return quantized variable name for the input `var_name`.
    """
    return "%s.scale" % (var_name)


def _original_var_name(var_name):
    """
    Return the original variable name.
    """
    if var_name.endswith('.quantized.dequantized'):
        return var_name[:-len('.quantized.dequantized')]
    if var_name.endswith('.quantized'):
        return var_name[:-len('.quantized')]
    if var_name.endswith('.dequantized'):
        return var_name[:-len('.dequantized')]
    if var_name.endswith('.scale'):
        return var_name[:-len('.scale')]
    else:
        return var_name


def _is_float(v):
    return isinstance(v, float) or isinstance(v, np.float32)


def quant(x, scale, num_bits):
    y = np.round(x / scale * ((1 << (num_bits - 1)) - 1))
    return y


class QuantizeTranspiler(object):
    def __init__(self,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
        Convert and rewrite the fluid Program according to weight and
        activation quantization type.

        Args:
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.

        Examples:

        .. code-block:: python

            # the original program will be rewrite, if you don't want to
            # change it, please clone at first.
            # quantize_program = program.clone()
            t = fluid.QuantizeTranspiler()
            t.transpile(quantize_program)

        """
        self.weight_bits = weight_bits
        self.activation_bits = activation_bits
        quant_type = ['abs_max', 'range_abs_max']
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))

        self.weight_quantize_type = weight_quantize_type
        self.activation_quantize_type = activation_quantize_type

        self.window_size = window_size
        self.helper = LayerHelper(self.__class__.__name__)
        self.fake_quant_op_types = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self.fake_dequant_op_types = ['fake_dequantize_max_abs']
        self.is_test = None
        self.global_step = None

    def training_transpile(self, program=None, startup_program=None):
        """Rewrites a training input program in place for simulated
        quantization. Insert fake quantization and de-quantization ops into
        program to simulate the error introduced by quantization. And change
        the graident ops' input by using the faked quantization weights and
        activation. Since the program is transformed in place, the graph
        connection will change.

        Args:
            program (Program): the input program to be transpile.
        """
        self.is_test = False
        program = default_main_program() if program is None else program
        startup_program = default_startup_program() if startup_program is \
            None else startup_program

        # marked the variable which has been quantized and dequantized.
        dequanted_vars = [
            collections.OrderedDict() for _ in range(len(program.blocks))
        ]
        grad_op_types = ['%s_grad' % (type) for type in _QUANTIZABLE_OP_TYPES]

        params = [p.name for p in program.global_block().iter_parameters()]

        def _transpile_forward(block, op):
            idx = block.ops.index(op)
            block_id = block.idx
            # insert quant op and dequant op
            for name in op.input_arg_names:
                if name in dequanted_vars[block_id]:
                    dequant_var = dequanted_vars[block_id][name]
                else:
                    var = block.var(name)
                    quant_bits = self.weight_bits if var.name in params \
                                 else self.activation_bits
                    quant_type = self.weight_quantize_type if var.name \
                        in params else self.activation_quantize_type

                    quant_var, scale_var = self._insert_quant_op(
                        block, idx, var, quant_bits, quant_type)
                    dequant_var = self._insert_dequant_op(
                        block, idx + 1, quant_var, scale_var, quant_bits)
                    dequanted_vars[block_id][name] = dequant_var
                # rename the forward op inputs
                op.rename_input(name, dequant_var.name)

        def _transpile_backward(block, op):
            block_id = block.idx
            no_dequanted_input_vars = True
            for name in op.input_arg_names:
                if name in dequanted_vars[block_id]:
                    dequant_var = dequanted_vars[block_id][name]
                    op.rename_input(name, dequant_var.name)
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.type))

        with program_guard(program, startup_program):
            self._create_globael_step()
            for block in program.blocks:
                ops = list(block.ops)
                block_id = block.idx
                for op in ops:
                    # rewrite the forward ProgramDes
                    if op.type in _QUANTIZABLE_OP_TYPES:
                        _transpile_forward(block, op)
                    # rename the backward op inputs
                    if op.type in grad_op_types:
                        _transpile_backward(block, op)

    def _create_globael_step(self):
        if self.weight_quantize_type == 'range_abs_max' or \
            self.activation_quantize_type == 'range_abs_max':
            self.global_step = autoincreased_step_counter()

    def freeze_program(self, program, place, fuse_bn=False, scope=None):
        """Freeze input training program for inference.

        Args:
            program (Program): the input program to be transpile.
        """

        self.is_test = True
        scope = global_scope() if scope is None else scope
        program = default_main_program() if program is None else program

        if fuse_bn:
            bn_fuse_transpiler = BNFuseTranspiler()
            bn_fuse_transpiler.transpile(program, place)

        persistable_vars = [
            v.name
            for v in filter(lambda var: var.persistable, program.list_vars())
        ]
        op_in_rename_map = [
            collections.OrderedDict() for _ in range(len(program.blocks))
        ]
        op_out_rename_map = [
            collections.OrderedDict() for _ in range(len(program.blocks))
        ]
        var_scale_map = [
            collections.OrderedDict() for _ in range(len(program.blocks))
        ]

        def _remove_fake_quant_and_dequant_op(block, op):
            idx = block.ops.index(op)
            block_id = block.idx
            k = op.output('Out')[0]
            v = op.input('X')[0]
            if v not in op_in_rename_map[block_id]:
                op_in_rename_map[block_id][k] = v
            else:
                op_in_rename_map[block_id][k] = op_in_rename_map[block_id][v]
            block._remove_op(idx)

        def _insert_post_dequant_op(block, op):
            idx = block.ops.index(op)
            block_id = block.idx
            max_range = None
            scale_var = None
            for name in op.input_arg_names:
                if name in op_in_rename_map[block_id]:
                    op.rename_input(name, op_in_rename_map[block_id][name])

                scale_v = var_scale_map[block_id][_original_var_name(name)]
                if _original_var_name(name) in persistable_vars:
                    param_range = (1 << (self.weight_bits - 1)) - 1
                    act_range = (1 << (self.activation_bits - 1)) - 1
                    assert _is_float(scale_v)
                    max_range = param_range * act_range / scale_v
                else:
                    assert isinstance(scale_v, Variable)
                    scale_var = var_scale_map[block_id][_original_var_name(
                        name)]

            if len(op.output_arg_names) != 1:
                raise ValueError("Only support one output, but op %s has"
                                 " more than one output." % (op.type))
            out_var = block.var(op.output_arg_names[0])
            dequant_var = block.create_var(
                name=_dequantized_var_name(out_var.name),
                type=out_var.type,
                shape=out_var.shape,
                dtype=out_var.dtype)
            # insert fake_dequantize_op
            dequant_op = block._insert_op(
                idx + 1,
                type="fake_dequantize_max_abs",
                attrs={'max_range': float(max_range)},
                inputs={"X": out_var,
                        'Scale': scale_var},
                outputs={"Out": dequant_var})
            op_out_rename_map[block_id][out_var.name] = dequant_var.name
            return dequant_var

        def _load_var(name):
            return np.array(scope.find_var(name).get_tensor())

        def _restore_var(name, arr):
            t = scope.find_var(name).get_tensor()
            t.set(arr, place)

        for block in program.blocks:
            ops = list(block.ops)
            block_id = block.idx
            for op in ops:
                op_type = op.type

                # insert dequant_op after fc/conv, need to rename
                # input of the followed ops
                for name in op.input_arg_names:
                    if name in op_out_rename_map[block_id]:
                        op.rename_input(name, op_out_rename_map[block_id][name])

                if op_type in self.fake_quant_op_types:
                    in_arg_name = op.input('X')[0]
                    if in_arg_name in persistable_vars:
                        if self.weight_quantize_type == 'abs_max':
                            param = _load_var(in_arg_name)
                            scale_v = np.max(np.abs(param))
                        else:
                            scale_v = _load_var(op.output('OutScale')[0])
                        var_scale_map[block_id][in_arg_name] = scale_v
                    else:
                        scale_v = block.var(op.output('OutScale')[0])
                        var_scale_map[block_id][in_arg_name] = scale_v

                    if in_arg_name in persistable_vars:
                        _remove_fake_quant_and_dequant_op(block, op)
                        # quantize weight and restore
                        param_t = _load_var(in_arg_name)
                        param_q_t = quant(param_t, scale_v, self.weight_bits)
                        _restore_var(in_arg_name, param_q_t)

                if op_type in self.fake_dequant_op_types:
                    _remove_fake_quant_and_dequant_op(block, op)

                if op_type in _QUANTIZABLE_OP_TYPES:
                    dequant_var = _insert_post_dequant_op(block, op)

        # remove the unused var in ProgramDesc
        self._remove_unused_var(program)
        #program = program.clone()

    def convert_to_int8(self, program, place, scope=None):
        scope = global_scope() if scope is None else scope
        program = default_main_program() if program is None else program

        def _load_var(name):
            return np.array(scope.find_var(name).get_tensor())

        global_block = program.global_block()

        def convert_to_int8(var):
            int8_var_name = var.name + ".int8"
            int8_var = global_block.create_parameter(
                name=int8_var_name.encode('ascii'),
                type=var.type,
                dtype=core.VarDesc.VarType.INT8,
                shape=var.shape)

            tensor = _load_var(var.name)

            scope.var(int8_var_name)
            int8_tensor = scope.find_var(int8_var_name).get_tensor()
            int8_tensor.set(tensor.astype(np.int8), place)
            return int8_var

        input_map = {}
        for block in program.blocks:
            for op in list(block.ops):
                if op.type in _QUANTIZABLE_OP_TYPES:
                    for name in op.input_arg_names:
                        var = block.var(name)
                        if var.persistable:
                            if name not in input_map:
                                int8_var = convert_to_int8(var)
                                input_map[name] = int8_var.name
                            op.rename_input(name, input_map[name])
        self._remove_unused_var(program)

    def _remove_unused_var(self, program):
        for block in program.blocks:
            args = []
            for op in block.ops:
                args += op.input_arg_names
                args += op.output_arg_names
            args = list(set(args))
            for var in block.vars.keys():
                if var not in args:
                    block._remove_var(var)

    def _insert_quant_abs_max_op(self, block, idx, var, quant_bits):
        """Insert fake_quantize_abs_max op.
        """
        quant_var = block.create_var(
            name=_quantized_var_name(var.name),
            type=var.type,
            shape=var.shape,
            dtype=var.dtype)
        scale = block.create_var(
            name=_quantized_scale_name(var.name),
            type=var.type,
            shape=var.shape,
            dtype=var.dtype)
        quant_op = block._insert_op(
            idx,
            type='fake_quantize_abs_max',
            attrs={'bit_length': quant_bits},
            inputs={'X': var},
            outputs={'Out': quant_var,
                     'OutScale': scale})
        return quant_var, scale

    def _insert_quant_range_abs_max_op(self, block, idx, var, quant_bits):
        """Insert fake_quantize_range_abs_max
        """
        quant_var = block.create_var(
            name=_quantized_var_name(var.name),
            type=var.type,
            shape=var.shape,
            dtype=var.dtype)
        scale = self.helper.create_parameter(
            attr=ParamAttr(
                name=_quantized_scale_name(var.name),
                initializer=Constant(0.001),
                trainable=False),
            shape=[1],
            dtype=var.dtype)
        scale.stop_gradient = True

        ins = {'X': var, 'InScale': scale}
        outs = {'Out': quant_var, 'OutScale': scale}
        if not self.is_test:
            # A global step counter variable with type int64
            scales = self.helper.create_global_variable(
                name=unique_name.generate('scales'),
                persistable=True,
                dtype=var.dtype,
                shape=[self.window_size])
            self.helper.set_variable_initializer(
                scales, initializer=Constant(value=0))

            ins['Iter'] = self.global_step
            outs['OutScales'] = scales

        attrs = {
            'window_size': self.window_size,
            'bit_length': quant_bits,
            'is_test': self.is_test
        }

        quant_op = block._insert_op(
            idx,
            type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        return quant_var, scale

    def _insert_quant_op(self, block, idx, var, quant_bits, quant_type):
        """
        Insert fake_quantize_op
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(block, idx, var, quant_bits)
        elif quant_type == 'range_abs_max':
            return self._insert_quant_range_abs_max_op(block, idx, var,
                                                       quant_bits)

    def _insert_dequant_op(self, block, idx, var, scale, quant_bits):
        """
        Insert fake_quantize_op
        """
        dequant_var = block.create_var(
            name=_dequantized_var_name(var.name),
            type=var.type,
            shape=var.shape,
            dtype=var.dtype)
        # insert fake_dequantize_op
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op = block._insert_op(
            idx,
            type="fake_dequantize_max_abs",
            attrs={'max_range': float(max_range)},
            inputs={"X": var,
                    'Scale': scale},
            outputs={"Out": dequant_var})
        return dequant_var


class BNFuseTranspiler(InferenceTranspiler):
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
        def _update_param(op, param_name, new_param):
            var = self.block.vars[param_name]
            tensor = self.scope.find_var(param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)

        def _load_param(param_name):
            return np.array(self.scope.find_var(param_name).get_tensor())

        bias_bn = _load_param(bn_op.input("Bias")[0])  #Bias
        scale_bn = _load_param(bn_op.input("Scale")[0])  #Scale
        mean_bn = _load_param(bn_op.input("Mean")[0])  #Mean
        var_bn = _load_param(bn_op.input("Variance")[0])  #Variance

        if current_op.type in ['conv2d', 'depthwise_conv2d']:
            current_param = _load_param(
                _original_var_name(current_op.input("Filter")[0]))
        elif current_op.type == 'mul':
            current_param = _load_param(
                _original_var_name(current_op.input("Y")[0]))

        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d/fc
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

        # update parameters
        if current_op.type in ['conv2d', 'depthwise_conv2d']:
            _update_param(current_op,
                          _original_var_name(current_op.input("Filter")[0]),
                          dst_param)
        elif current_op.type == 'mul':
            _update_param(current_op,
                          _original_var_name(current_op.input("Y")[0]),
                          dst_param)

        _update_param(bias_op, bias_op.input("Y")[0], bias)

        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]