activation_op_xpu.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/activation_op.h"
#include <string>
#include "paddle/fluid/platform/xpu_header.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename Functor>
class XPUActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename Functor>
class XPUActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

template <typename DeviceContext, typename T>
void xpu_activation_forward(const framework::ExecutionContext &ctx,
                            xpu::Activation_t type) {
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
  int r = 0;
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
P
procr 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  switch (type.type) {
    case xpu::Activation_t::HARD_SWISH: {
      float threshold = ctx.Attr<float>("threshold");
      float scale = ctx.Attr<float>("scale");
      float offset = ctx.Attr<float>("offset");
      PADDLE_ENFORCE_EQ(threshold, 6.0f,
                        platform::errors::External(
                            "Not support threshold [%f] in XPU", threshold));
      PADDLE_ENFORCE_EQ(
          scale, 6.0f,
          platform::errors::External("Not support scale [%f] in XPU", scale));
      PADDLE_ENFORCE_EQ(
          offset, 3.0f,
          platform::errors::External("Not support offset [%f] in XPU", offset));

      r = xpu::hard_swish(xpu_context, reinterpret_cast<const float *>(x_data),
                          reinterpret_cast<float *>(y_data), x->numel());
      break;
    }
    case xpu::Activation_t::ACT_POW: {
      type.pow_factor = ctx.Attr<float>("factor");
    }
    default: {
      r = xpu::activation_forward(xpu_context, type, x->numel(),
                                  reinterpret_cast<const float *>(x_data),
                                  reinterpret_cast<float *>(y_data));
      break;
    }
  }

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        r));
}

template <typename DeviceContext, typename T>
void xpu_activation_backward(const framework::ExecutionContext &ctx,
                             xpu::Activation_t type) {
  /* TODO: relu tanh sigmoid are inplace */
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Input<Tensor>("Out");
  auto *dOut = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
  auto *dX = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  const T *y_grad = nullptr;
  if (x != nullptr) x_data = x->data<T>();
  if (y != nullptr) y_data = y->data<T>();
  if (dOut != nullptr) y_grad = dOut->data<T>();
  T *x_grad = dX->mutable_data<T>(ctx.GetPlace());
P
procr 已提交
118
  int r = 0;
119
  auto xpu_context = ctx.device_context<DeviceContext>().x_context();
P
procr 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  switch (type.type) {
    case xpu::Activation_t::HARD_SWISH: {
      float threshold = ctx.Attr<float>("threshold");
      float scale = ctx.Attr<float>("scale");
      float offset = ctx.Attr<float>("offset");
      PADDLE_ENFORCE_EQ(threshold, 6.0f,
                        platform::errors::External(
                            "Not support threshold [%f] in XPU", threshold));
      PADDLE_ENFORCE_EQ(
          scale, 6.0f,
          platform::errors::External("Not support scale [%f] in XPU", scale));
      PADDLE_ENFORCE_EQ(
          offset, 3.0f,
          platform::errors::External("Not support offset [%f] in XPU", offset));
      r = xpu::hard_swish_grad(xpu_context,
                               reinterpret_cast<const float *>(x_data),
                               reinterpret_cast<const float *>(y_data),
                               reinterpret_cast<const float *>(y_grad),
                               reinterpret_cast<float *>(x_grad), dX->numel());
      break;
    }
    default: {
      r = xpu::activation_backward(xpu_context, type, dX->numel(),
144 145 146 147
                                   reinterpret_cast<const float *>(x_data),
                                   reinterpret_cast<const float *>(y_data),
                                   reinterpret_cast<const float *>(y_grad),
                                   reinterpret_cast<float *>(x_grad));
P
procr 已提交
148 149 150 151
      break;
    }
  }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        r));
}

template <typename T, xpu::Activation_t::act_enum algorithm>
struct XPUActivationFunc : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_forward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                  algorithm);
  }
};

template <typename T, xpu::Activation_t::act_enum algorithm>
struct XPUActivationGradFunc : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    xpu_activation_backward<paddle::platform::XPUDeviceContext, T>(ctx,
                                                                   algorithm);
  }
};

template <typename T>
using XPUReluFunctor = XPUActivationFunc<T, xpu::Activation_t::RELU>;
template <typename T>
using XPUSigmoidFunctor = XPUActivationFunc<T, xpu::Activation_t::SIGMOID>;
template <typename T>
using XPUTanhFunctor = XPUActivationFunc<T, xpu::Activation_t::TANH>;
template <typename T>
using XPUGeluFunctor = XPUActivationFunc<T, xpu::Activation_t::GELU>;
template <typename T>
using XPULogFunctor = XPUActivationFunc<T, xpu::Activation_t::LOG>;
template <typename T>
using XPUSquareFunctor = XPUActivationFunc<T, xpu::Activation_t::SQUARE>;
template <typename T>
P
procr 已提交
188 189
using XPUHardSwishFunctor = XPUActivationFunc<T, xpu::Activation_t::HARD_SWISH>;
template <typename T>
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
using XPUSuareGradFunctor = XPUActivationGradFunc<T, xpu::Activation_t::SQUARE>;
template <typename T>
using XPUReluGradFunctor = XPUActivationGradFunc<T, xpu::Activation_t::RELU>;
template <typename T>
using XPUSigmoidGradFunctor =
    XPUActivationGradFunc<T, xpu::Activation_t::SIGMOID>;
template <typename T>
using XPUTanhGradFunctor = XPUActivationGradFunc<T, xpu::Activation_t::TANH>;
template <typename T>
using XPUGeluGradFunctor = XPUActivationGradFunc<T, xpu::Activation_t::GELU>;
template <typename T>
using XPUSqrtFunctor = XPUActivationFunc<T, xpu::Activation_t::SQRT>;
template <typename T>
using XPUSqrtGradFunctor = XPUActivationGradFunc<T, xpu::Activation_t::SQRT>;
template <typename T>
P
procr 已提交
205 206 207
using XPUHardSwishGradFunctor =
    XPUActivationGradFunc<T, xpu::Activation_t::HARD_SWISH>;
template <typename T>
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
using XPUACTPowFunctor = XPUActivationFunc<T, xpu::Activation_t::ACT_POW>;
template <typename T>
using XPUABSFunctor = XPUActivationFunc<T, xpu::Activation_t::ABS>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, functor, grad_functor)  \
  REGISTER_OP_XPU_KERNEL(act_type,                                       \
                         ops::XPUActivationKernel<ops::functor<float>>); \
  REGISTER_OP_XPU_KERNEL(                                                \
      act_type##_grad,                                                   \
      ops::XPUActivationGradKernel<ops::grad_functor<float>>);

REGISTER_ACTIVATION_XPU_KERNEL(relu, XPUReluFunctor, XPUReluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(tanh, XPUTanhFunctor, XPUTanhGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, XPUSigmoidFunctor,
                               XPUSigmoidGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(gelu, XPUGeluFunctor, XPUGeluGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, XPUSqrtFunctor, XPUSqrtGradFunctor)
REGISTER_ACTIVATION_XPU_KERNEL(square, XPUSquareFunctor, XPUSuareGradFunctor)
P
procr 已提交
230 231
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, XPUHardSwishFunctor,
                               XPUHardSwishGradFunctor)
232 233 234 235 236 237 238 239
REGISTER_OP_XPU_KERNEL(log,
                       ops::XPUActivationKernel<ops::XPULogFunctor<float>>);
REGISTER_OP_XPU_KERNEL(pow,
                       ops::XPUActivationKernel<ops::XPUACTPowFunctor<float>>);
REGISTER_OP_XPU_KERNEL(abs,
                       ops::XPUActivationKernel<ops::XPUABSFunctor<float>>);

#endif  // PADDLE_WITH_XPU