mnist.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import gzip
import struct
import numpy as np
21
from PIL import Image
22

23
import paddle
24
from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
26

27
__all__ = []
28 29 30 31


class MNIST(Dataset):
    """
32
    Implementation of `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset.
33 34

    Args:
35 36 37 38 39 40 41 42 43 44 45
        image_path (str, optional): Path to image file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
        label_path (str, optional): Path to label file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): Transform to perform on image, None for no transform. Default: None.
        download (bool, optional): Download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default: True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
46 47
            default backend is 'pil'. Default: None.
            
48
    Returns:
49
        :ref:`api_paddle_io_Dataset`. An instance of MNIST dataset.
50 51 52 53 54

    Examples:
        
        .. code-block:: python

55 56
            import itertools
            import paddle.vision.transforms as T
57
            from paddle.vision.datasets import MNIST
58 59


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
            mnist = MNIST()
            print(len(mnist))
            # 60000

            for i in range(5):  # only show first 5 images
                img, label = mnist[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (28, 28) [5]


            transform = T.Compose(
                [
                    T.ToTensor(),
                    T.Normalize(
                        mean=[127.5],
                        std=[127.5],
                    ),
                ]
            )

            mnist_test = MNIST(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(mnist_test))
            # 10000

            for img, label in itertools.islice(iter(mnist_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [1, 28, 28] [7]
93
    """
L
LielinJiang 已提交
94 95 96 97 98 99 100 101 102 103
    NAME = 'mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
104 105 106 107 108 109

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 mode='train',
                 transform=None,
110 111
                 download=True,
                 backend=None):
112 113
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
114 115 116 117 118

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
119 120
                "Expected backend are one of ['pil', 'cv2'], but got {}".format(
                    backend))
121 122
        self.backend = backend

123 124 125
        self.mode = mode.lower()
        self.image_path = image_path
        if self.image_path is None:
K
Kaipeng Deng 已提交
126
            assert download, "image_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
127 128
            image_url = self.TRAIN_IMAGE_URL if mode == 'train' else self.TEST_IMAGE_URL
            image_md5 = self.TRAIN_IMAGE_MD5 if mode == 'train' else self.TEST_IMAGE_MD5
129
            self.image_path = _check_exists_and_download(
L
LielinJiang 已提交
130
                image_path, image_url, image_md5, self.NAME, download)
131 132 133

        self.label_path = label_path
        if self.label_path is None:
K
Kaipeng Deng 已提交
134
            assert download, "label_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
135 136
            label_url = self.TRAIN_LABEL_URL if self.mode == 'train' else self.TEST_LABEL_URL
            label_md5 = self.TRAIN_LABEL_MD5 if self.mode == 'train' else self.TEST_LABEL_MD5
137
            self.label_path = _check_exists_and_download(
L
LielinJiang 已提交
138
                label_path, label_url, label_md5, self.NAME, download)
139 140 141 142 143 144

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

145 146
        self.dtype = paddle.get_default_dtype()

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
168 169
                magic_lab, label_num = struct.unpack_from(
                    magic_byte_lab, lab_buf, offset_lab)
170 171 172 173 174 175 176 177 178 179 180 181 182
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
183 184 185
                    images = np.reshape(
                        images_temp,
                        (buffer_size, rows * cols)).astype('float32')
186 187 188 189 190 191 192 193 194
                    offset_img += struct.calcsize(fmt_images)

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
195 196 197
        image = np.reshape(image, [28, 28])

        if self.backend == 'pil':
L
LielinJiang 已提交
198
            image = Image.fromarray(image.astype('uint8'), mode='L')
199

200 201
        if self.transform is not None:
            image = self.transform(image)
202 203 204 205

        if self.backend == 'pil':
            return image, label.astype('int64')

206
        return image.astype(self.dtype), label.astype('int64')
207 208 209

    def __len__(self):
        return len(self.labels)
L
LielinJiang 已提交
210 211 212 213


class FashionMNIST(MNIST):
    """
214
    Implementation of `Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ dataset.
L
LielinJiang 已提交
215 216

    Args:
217 218 219 220 221 222 223 224 225 226 227
        image_path (str, optional): Path to image file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist.
        label_path (str, optional): Path to label file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist.
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): Transform to perform on image, None for no transform. Default: None.
        download (bool, optional): Whether to download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default: True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
L
LielinJiang 已提交
228 229 230
            default backend is 'pil'. Default: None.
            
    Returns:
231
        :ref:`api_paddle_io_Dataset`. An instance of FashionMNIST dataset.
L
LielinJiang 已提交
232 233 234 235 236

    Examples:
        
        .. code-block:: python

237 238
            import itertools
            import paddle.vision.transforms as T
L
LielinJiang 已提交
239 240 241
            from paddle.vision.datasets import FashionMNIST


242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            fashion_mnist = FashionMNIST()
            print(len(fashion_mnist))
            # 60000

            for i in range(5):  # only show first 5 images
                img, label = fashion_mnist[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (28, 28) [9]


            transform = T.Compose(
                [
                    T.ToTensor(),
                    T.Normalize(
                        mean=[127.5],
                        std=[127.5],
                    ),
                ]
            )

            fashion_mnist_test = FashionMNIST(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(fashion_mnist_test))
            # 10000

            for img, label in itertools.islice(iter(fashion_mnist_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [1, 28, 28] [9]
L
LielinJiang 已提交
275 276 277 278 279 280 281 282 283 284 285 286
    """

    NAME = 'fashion-mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/fashion_mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = 'bef4ecab320f06d8554ea6380940ec79'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'bb300cfdad3c16e7a12a480ee83cd310'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = '8d4fb7e6c68d591d4c3dfef9ec88bf0d'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = '25c81989df183df01b3e8a0aad5dffbe'