static_analysis.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
from paddle.utils import gast
18 19
from .logging_utils import warn
from .utils import is_paddle_api, is_dygraph_api, is_numpy_api, index_in_list, ast_to_source_code
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

__all__ = ['AstNodeWrapper', 'NodeVarType', 'StaticAnalysisVisitor']


class NodeVarType(object):
    """
    Enum class of python variable types. We have to know some variable types
    during compile time to transfer AST. For example, a string variable and a
    tensor variable in if clause may lead to different conversion from dygraph
    to static graph.
    """
    ERROR = -1  # Returns when static analysis gets error
    UNKNOWN = 0  # Reserve for AST nodes have not known the type
    STATEMENT = 1  # For nodes representing statement (non-variable type)
    CALLABLE = 2

    # python data types
    NONE = 100
    BOOLEAN = 101
    INT = 102
    FLOAT = 103
    STRING = 104
    TENSOR = 105
    NUMPY_NDARRAY = 106

    # python collections
    LIST = 200
    SET = 201
    DICT = 202

    PADDLE_DYGRAPH_API = 300
    PADDLE_CONTROL_IF = 301
    PADDLE_CONTROL_WHILE = 302
    PADDLE_CONTROL_FOR = 303
54 55 56
    # Paddle API may not be visible to get source code.
    # We use this enum value to denote the type return by a Paddle API
    PADDLE_RETURN_TYPES = 304
57

58 59 60
    # If node.node_var_type in TENSOR_TYPES, it can be considered as tensor-dependent.
    TENSOR_TYPES = {TENSOR, PADDLE_RETURN_TYPES}

61 62 63 64 65 66 67 68 69
    Annotation_map = {
        "Tensor": TENSOR,
        "paddle.Tensor": TENSOR,
        "int": INT,
        "float": FLOAT,
        "bool": BOOLEAN,
        "str": STRING
    }

70 71 72 73 74 75 76 77 78 79 80 81
    @staticmethod
    def binary_op_output_type(in_type1, in_type2):
        if in_type1 == in_type2:
            return in_type1

        if in_type1 == NodeVarType.UNKNOWN:
            return in_type2
        if in_type2 == NodeVarType.UNKNOWN:
            return in_type1

        supported_types = [
            NodeVarType.BOOLEAN, NodeVarType.INT, NodeVarType.FLOAT,
82 83
            NodeVarType.NUMPY_NDARRAY, NodeVarType.TENSOR,
            NodeVarType.PADDLE_RETURN_TYPES
84 85 86 87 88 89 90 91 92 93 94 95
        ]

        if in_type1 not in supported_types:
            return NodeVarType.UNKNOWN
        if in_type2 not in supported_types:
            return NodeVarType.UNKNOWN

        forbidden_types = [NodeVarType.NUMPY_NDARRAY, NodeVarType.TENSOR]
        if in_type1 in forbidden_types and in_type2 in forbidden_types:
            return NodeVarType.UNKNOWN
        return max(in_type1, in_type2)

96 97 98 99 100 101 102 103 104 105
    @staticmethod
    def type_from_annotation(annotation):
        annotation_str = ast_to_source_code(annotation).strip()
        if annotation_str in NodeVarType.Annotation_map:
            return NodeVarType.Annotation_map[annotation_str]

        # raise warning if not found
        warn("Currently we don't support annotation: %s" % annotation_str)
        return NodeVarType.UNKNOWN

106 107 108 109 110 111 112 113 114 115 116 117 118

class AstNodeWrapper(object):
    """
    Wrapper for python gast.node. We need a node wrapper because gast.node
    doesn't store all required information when we are transforming AST.
    We should collect additional information which the actual transformation
    needs.
    """

    def __init__(self, node):
        self.node = node
        self.parent = None
        self.children = []
119
        self.node_var_type = {NodeVarType.UNKNOWN}
120 121 122 123 124


class AstVarScope(object):
    """
    AstVarScope is a class holding the map from current scope variable to its
125
    type.
126
    """
127 128 129 130 131 132 133 134
    SCOPE_TYPE_SCRIPT = 0
    SCOPE_TYPE_FUNCTION = 1
    SCOPE_TYPE_CLASS = 2

    def __init__(self,
                 scope_name='',
                 scope_type=SCOPE_TYPE_SCRIPT,
                 parent_scope=None):
135 136 137 138
        self.sub_scopes = []
        self.name_to_id = {}
        self.id_to_type = {}
        self.cur_id = 0
139 140 141

        self.scope_name = scope_name
        self.scope_type = scope_type
142 143 144 145
        self.parent_scope = parent_scope
        if parent_scope is not None:
            parent_scope.sub_scopes.append(self)

146 147 148 149 150 151 152 153 154 155
    def add_var_type(self, var_name, node_var_type):
        var_type = self.get_var_type(var_name)
        if var_type == {NodeVarType.UNKNOWN}:
            self.set_var_type(var_name, node_var_type)
        else:
            if isinstance(node_var_type, set):
                var_type.update(node_var_type)
            else:
                var_type.add(node_var_type)

156 157 158 159 160 161 162
    def set_var_type(self, var_name, node_var_type):
        if var_name in self.name_to_id:
            num_id = self.name_to_id[var_name]
        else:
            num_id = self.cur_id
            self.cur_id += 1
            self.name_to_id[var_name] = num_id
163 164
        self.id_to_type[num_id] = node_var_type if isinstance(
            node_var_type, set) else {node_var_type}
165 166 167 168 169 170

    def get_var_type(self, var_name):
        if var_name in self.name_to_id:
            num_id = self.name_to_id[var_name]
            return self.id_to_type[num_id]
        if self.parent_scope is None:
171
            return {NodeVarType.UNKNOWN}
172 173 174 175 176
        return self.parent_scope.get_var_type(var_name)


class AstVarEnv(object):
    """
177
    A class maintains scopes and mapping from name strings to type.
178 179 180 181 182
    """

    def __init__(self):
        self.cur_scope = AstVarScope()

183
    def enter_scope(self, scope_name, scope_type):
184 185 186
        self.cur_scope = AstVarScope(scope_name,
                                     scope_type,
                                     parent_scope=self.cur_scope)
187 188 189 190
        return self.cur_scope

    def exit_scope(self):
        assert self.cur_scope.parent_scope is not None, "Call exit_scope in "\
191
            "AstVarEnv when current scope doesn't have parent scope."
192 193 194
        self.cur_scope = self.cur_scope.parent_scope
        return self.cur_scope

195 196 197 198 199 200 201 202
    def get_parent_scope(self):
        assert self.cur_scope.parent_scope is not None, "Call parent_scope in "\
            "AstVarEnv when current scope doesn't have parent scope."
        return self.cur_scope.parent_scope

    def add_var_type(self, var_name, node_var_type):
        self.cur_scope.add_var_type(var_name, node_var_type)

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    def set_var_type(self, var_name, node_var_type):
        self.cur_scope.set_var_type(var_name, node_var_type)

    def get_var_type(self, var_name):
        return self.cur_scope.get_var_type(var_name)

    def get_scope_var_type(self):
        '''
        Returns a dict mapping from variable name to type. Used for debug and
        test.
        '''
        cur_scope_dict = {}
        for name in self.cur_scope.name_to_id:
            node_var_type = self.cur_scope.get_var_type(name)
            cur_scope_dict[name] = node_var_type
        return cur_scope_dict


class StaticAnalysisVisitor(object):
    """
    A class that does static analysis
    """

    def __init__(self, ast_root=None):
        if ast_root is not None:
            self.run(ast_root)

    def run(self, ast_root):
        self.node_wrapper_root = None
        self.ancestor_wrappers = []
        self.node_to_wrapper_map = {}
        self.var_env = AstVarEnv()

        self.dfs_visit(ast_root)

    def dfs_visit(self, node):
        # AST reuses some gast.nodes, such as Param node of expr_context
        if node not in self.node_to_wrapper_map:
            cur_wrapper = AstNodeWrapper(node)
            self.node_to_wrapper_map[node] = cur_wrapper
        else:
            cur_wrapper = self.node_to_wrapper_map[node]

        if self.node_wrapper_root is None:
            self.node_wrapper_root = cur_wrapper

        if len(self.ancestor_wrappers) != 0:
            last_wrapper = self.ancestor_wrappers[-1]
            last_wrapper.children.append(cur_wrapper)
            cur_wrapper.parent = last_wrapper

        self.ancestor_wrappers.append(cur_wrapper)
        for child in gast.iter_child_nodes(node):
256 257 258 259 260 261 262 263 264 265
            if isinstance(child, gast.FunctionDef) or isinstance(
                    child, gast.AsyncFunctionDef):
                # TODO: current version is function name mapping to its type
                # consider complex case involving parameters
                self.var_env.enter_scope(child.name,
                                         AstVarScope.SCOPE_TYPE_FUNCTION)
                func_type = self.dfs_visit(child)
                self.var_env.exit_scope()
            else:
                self.dfs_visit(child)
266 267 268 269 270 271 272 273 274 275 276 277 278 279
        self.ancestor_wrappers.pop()

        cur_wrapper.node_var_type = self._get_node_var_type(cur_wrapper)
        return cur_wrapper.node_var_type

    def get_node_wrapper_root(self):
        return self.node_wrapper_root

    def get_node_to_wrapper_map(self):
        return self.node_to_wrapper_map

    def get_var_env(self):
        return self.var_env

280 281 282 283 284 285 286 287
    def is_tensor_node(self, node):
        tensor_types = {NodeVarType.TENSOR, NodeVarType.PADDLE_RETURN_TYPES}
        node_wrapper = self.node_to_wrapper_map.get(node, None)
        if node_wrapper is None:
            return False
        if node_wrapper.node_var_type & tensor_types:
            return True

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def _get_constant_node_type(self, node):
        assert isinstance(node, gast.Constant), \
            "Type of input node should be gast.Constant, but received %s" % type(node)
        # singleton: None, True or False
        if node.value is None:
            return {NodeVarType.NONE}
        if isinstance(node.value, bool):
            return {NodeVarType.BOOLEAN}
        if isinstance(node.value, int):
            return {NodeVarType.INT}
        if isinstance(node.value, float):
            return {NodeVarType.FLOAT}
        if isinstance(node.value, str):
            return {NodeVarType.STRING}

        return {NodeVarType.UNKNOWN}

305 306 307
    def _get_node_var_type(self, cur_wrapper):
        node = cur_wrapper.node
        if isinstance(node, gast.Constant):
308
            return self._get_constant_node_type(node)
309 310

        if isinstance(node, gast.BoolOp):
311
            return {NodeVarType.BOOLEAN}
312
        if isinstance(node, gast.Compare):
313
            return {NodeVarType.BOOLEAN}
314 315

        if isinstance(node, gast.Dict):
316
            return {NodeVarType.DICT}
317
        if isinstance(node, gast.Set):
318
            return {NodeVarType.SET}
319 320 321 322 323 324 325

        if isinstance(node, gast.UnaryOp):
            return self.node_to_wrapper_map[node.operand].node_var_type

        if isinstance(node, gast.BinOp):
            left_type = self.node_to_wrapper_map[node.left].node_var_type
            right_type = self.node_to_wrapper_map[node.right].node_var_type
326 327 328 329 330
            result_type = set()
            for l in left_type:
                for r in right_type:
                    result_type.add(NodeVarType.binary_op_output_type(l, r))
            return result_type
331 332 333 334 335 336 337

        if isinstance(node, gast.Assign):
            ret_type = self.node_to_wrapper_map[node.value].node_var_type
            for target in node.targets:
                if isinstance(target, gast.Name):
                    self.node_to_wrapper_map[target].node_var_type = ret_type
                    self.var_env.set_var_type(target.id, ret_type)
338 339 340 341 342 343 344
                # Handle statements like `a, b = paddle.shape(x)`
                elif isinstance(target, gast.Tuple):
                    for sub_target in target.elts:
                        if isinstance(sub_target, gast.Name):
                            self.node_to_wrapper_map[
                                sub_target].node_var_type = ret_type
                            self.var_env.set_var_type(sub_target.id, ret_type)
345 346
            return ret_type

347 348 349 350 351 352
        if isinstance(node, gast.AnnAssign):
            # TODO(0x45f): To determine whether need to support assignment statements
            # like `self.x: float = 2.1`.
            ret_type = {NodeVarType.type_from_annotation(node.annotation)}
            # if annotation and value(Constant) are diffent type, we use value type
            if node.value:
353 354
                node_value_type = self.node_to_wrapper_map[
                    node.value].node_var_type
355 356
                if not (node_value_type
                        & {NodeVarType.UNKNOWN, NodeVarType.STATEMENT}):
357
                    ret_type = node_value_type
358 359 360 361 362
            if isinstance(node.target, gast.Name):
                self.node_to_wrapper_map[node.target].node_var_type = ret_type
                self.var_env.set_var_type(node.target.id, ret_type)
            return ret_type

363 364
        if isinstance(node, gast.Name):
            if node.id == "None":
365
                return {NodeVarType.NONE}
366
            if node.id in {"True", "False"}:
367
                return {NodeVarType.BOOLEAN}
368 369 370 371
            # If node is child of functionDef.arguments
            parent_node_wrapper = cur_wrapper.parent
            if parent_node_wrapper and isinstance(parent_node_wrapper.node,
                                                  gast.arguments):
372 373

                return self._get_func_argument_type(parent_node_wrapper, node)
374

375 376
            return self.var_env.get_var_type(node.id)

377
        if isinstance(node, gast.Return):
378 379 380 381
            # If return nothing:
            if node.value is None:
                return {NodeVarType.NONE}

382 383 384 385 386 387 388
            return_type = self.node_to_wrapper_map[node.value].node_var_type
            assert self.var_env.cur_scope.scope_type == AstVarScope.SCOPE_TYPE_FUNCTION, "Return at non-function scope"
            func_name = self.var_env.cur_scope.scope_name
            parent_scope = self.var_env.get_parent_scope()
            parent_scope.add_var_type(func_name, return_type)
            return return_type

389 390
        if isinstance(node, gast.Call):
            if is_dygraph_api(node):
391 392 393 394 395
                if isinstance(node.func, gast.Attribute):
                    if node.func.attr == "to_variable":
                        return {NodeVarType.TENSOR}
            if is_paddle_api(node):
                return {NodeVarType.PADDLE_RETURN_TYPES}
396 397
            if is_numpy_api(node):
                # In this simple version we assume numpy api returns nd-array
398 399 400 401
                return {NodeVarType.NUMPY_NDARRAY}

            if isinstance(node.func, gast.Name):
                return self.var_env.get_var_type(node.func.id)
402 403 404
        if isinstance(node, gast.Subscript):
            if self.is_tensor_node(node.value):
                return {NodeVarType.TENSOR}
405

406
        return {NodeVarType.STATEMENT}
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    def _get_func_argument_type(self, parent_node_wrapper, node):
        """
        Returns type information by parsing annotation or default values.
        
        For example:
            1. parse by default values.
                foo(x, y=1, z='s') -> x: UNKNOWN, y: INT, z: STR
            
            2. parse by Py3 type annotation.
                foo(x: Tensor, y: int, z: str) -> x: Tensor, y: INT, z: STR

            3. parse by type annotation and default values.
                foo(x: Tensor, y: int, z: str = 'abc') -> x: Tensor, y: INT, z: STR

        NOTE: Currently, we only support Tensor, int, bool, float, str et.al.
              Other complicate types will be supported later.
        """
        assert isinstance(node, gast.Name)

        parent_node = parent_node_wrapper.node
        var_type = {NodeVarType.UNKNOWN}
        if node.annotation is not None:
            var_type = {NodeVarType.type_from_annotation(node.annotation)}
            self.var_env.set_var_type(node.id, var_type)

        # if annotation and value(Constant) are diffent type, we use value type
        if parent_node.defaults:
            index = index_in_list(parent_node.args, node)
            args_len = len(parent_node.args)
            if index != -1 and args_len - index <= len(parent_node.defaults):
                defaults_node = parent_node.defaults[index - args_len]
                if isinstance(defaults_node, gast.Constant):
                    var_type = self._get_constant_node_type(defaults_node)

                    # Add node with identified type into cur_env.
                    self.var_env.set_var_type(node.id, var_type)

        return var_type