sampler.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import numpy as np
19
from .. import core
20

21 22 23
__all__ = [
    "Sampler", "SequenceSampler", "RandomSampler", "WeightedRandomSampler"
]
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182


class Sampler(object):
    """
    An abstract class to encapsulate methods and behaviors of samplers.

    All sampler used by :code:`paddle.io.BatchSampler` should be a subclass
    of :code:`paddle.io.Sampler`, BatchSampler subclasses should
    implement following methods:

    :code:`__iter__`: return sample index iterably, which iterate over indices
    of dataset elements

    :code:`__len__`: the number of sample in :attr:`data_source`


    Args:
        data_source(Dataset, optional): this could be an instance of
                :code:`paddle.io.Dataset` other Python object which
                implemented :code:`__len__` for Sampler to get indices
                as the range of :attr:`dataset` length. Default None.

    Returns:
        Sampler: an iterable object for sample indices iterating

    Examples:
        
        .. code-block:: python
            
            from paddle.io import Dataset, Sampler

            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples

            class MySampler(Sampler):
                def __init__(self, data_source):
                    self.data_source = data_source

                def __iter__(self):
                    return iter(range(len(self.data_source)))

                def __len__(self):
                    return len(self.data_source)
            
            sampler = MySampler(data_source=RandomDataset(100))

            for index in sampler:
                print(index)

    see `paddle.io.BatchSampler`
    see `paddle.io.DataLoader`

    """

    def __init__(self, data_source=None):
        self.data_source = data_source

    def __iter__(self):
        raise NotImplementedError

    # Not define __len__ method in this base class here for __len__
    # is not needed in same sence, e.g. paddle.io.IterableDataset


class SequenceSampler(Sampler):
    """
    Iterate samples sequentially, yield :code:`0, 1, 2, ..., len(data_source) -1`
    generally,

    Args:
        data_source(Dataset): dataset to sample, this could be an
                instance of :code:`paddle.io.Dataset` other Python
                object which implemented :code:`__len__`.

    Returns:
        Sampler: a Sampler yield sample index sequentially

    Examples:

        .. code-block:: python
            
            from paddle.io import Dataset, SequenceSampler

            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples

            sampler = SequenceSampler(data_source=RandomDataset(100))

            for index in sampler:
                print(index)

    see `paddle.io.Sampler`
    """

    def __init__(self, data_source):
        self.data_source = data_source

    def __iter__(self):
        return iter(range(len(self.data_source)))

    def __len__(self):
        return len(self.data_source)


class RandomSampler(Sampler):
    """
    Iterate samples randomly, yield shuffled indices, if :attr:`replacement=False`,
    yield shuffled indices of the whole data souce, if :attr:`replacement=True`,
    :attr:`num_samples` can set to specify the sample number to draw.

    Args:
        data_source(Dataset): dataset to sample, this could be an
                instance of :code:`paddle.io.Dataset` other Python
                object which implemented :code:`__len__`.
        replacement(bool): If False, sample the whole dataset, If False,
                set :attr:`num_samples` for how many sample to draw. Default False.
        num_samples(int): set sample number to draw if :attr:`replacement`
                is True. Default None.
        generator(Generator): specify a generator to sample the data source. Default None
        
    Returns:
        Sampler: a Sampler yield sample index randomly

    Examples:

        .. code-block:: python
            
            from paddle.io import Dataset, RandomSampler

            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples

183
            sampler = RandomSampler(data_source=RandomDataset(100))
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

            for index in sampler:
                print(index)

    see `paddle.io.Sampler`
    """

    def __init__(self,
                 data_source,
                 replacement=False,
                 num_samples=None,
                 generator=None):
        self.data_source = data_source
        self.replacement = replacement
        self._num_samples = num_samples
        self.generator = generator

        if not isinstance(self.replacement, bool):
            raise TypeError("expect boolean value for replacement, but got "
                            "replacement={}".format(self.replacement))

        if self._num_samples is not None and not replacement:
            raise ValueError(
207 208
                "num_samples should not be specified while replacement is False"
            )
209 210 211 212 213 214 215 216 217 218 219 220 221 222

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError("num_samples should be a positive integer, "
                             "but got num_samples={}".format(self.num_samples))

    @property
    def num_samples(self):
        if self._num_samples is None:
            return len(self.data_source)
        return self._num_samples

    def __iter__(self):
        n = len(self.data_source)
        if self.generator:
223 224 225 226 227
            for i in range(self.num_samples):
                try:
                    index = next(self.generator)
                except StopIteration:
                    return
228 229 230
                yield index
        else:
            if self.replacement:
231 232 233
                for index in np.random.choice(np.arange(n),
                                              self.num_samples,
                                              replace=True).tolist():
234 235
                    yield index
            else:
236 237
                for index in np.random.choice(np.arange(n), n,
                                              replace=False).tolist():
238 239 240 241
                    yield index

    def __len__(self):
        return self.num_samples
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323


def _weighted_sample(weights, num_samples, replacement=True):
    if isinstance(weights, core.LoDTensor):
        weights = weights.numpy()
    if isinstance(weights, (list, tuple)):
        weights = np.array(weights)
    assert isinstance(weights, np.ndarray), \
            "weights should be paddle.Tensor, numpy.ndarray, list or tuple"
    assert len(weights.shape) <= 2, \
            "weights should be a 1-D or 2-D array"
    weights = weights.reshape((-1, weights.shape[-1]))
    assert np.all(weights >= 0.), \
            "weights should be positive value"
    assert not np.any(weights == np.inf), \
            "weights shoule not be INF"
    assert not np.any(weights == np.nan), \
            "weights shoule not be NaN"

    non_zeros = np.sum(weights > 0., axis=1)
    assert np.all(non_zeros > 0), \
            "weights should have positive values"
    if not replacement:
        assert np.all(non_zeros >= num_samples), \
            "weights positive value number should not " \
            "less than num_samples when replacement=False"

    weights = weights / weights.sum(axis=1)
    rets = []
    for i in range(weights.shape[0]):
        ret = np.random.choice(weights.shape[1], num_samples, replacement,
                               weights[i])
        rets.append(ret)
    return np.array(rets)


class WeightedRandomSampler(Sampler):
    """
    Random sample with given weights (probabilities), sampe index will be in range
    [0, len(weights) - 1], if :attr:`replacement` is True, index can be sampled
    multiple times.

    Args:
        weights(numpy.ndarray|paddle.Tensor|list|tuple): sequence of weights,
                should be numpy array, paddle.Tensor, list or tuple
        num_samples(int): set sample number to draw from sampler.
        replacement(bool): Whether to draw sample with replacements, default True
        
    Returns:
        Sampler: a Sampler yield sample index randomly by given weights

    Examples:

        .. code-block:: python
            
            from paddle.io import WeightedRandomSampler

            sampler = WeightedRandomSampler(weights=[0.1, 0.3, 0.5, 0.7, 0.2],
                                            num_samples=5,
                                            replacement=True)

            for index in sampler:
                print(index)
    """

    def __init__(self, weights, num_samples, replacement=True):
        if not isinstance(num_samples, int) or num_samples <= 0:
            raise ValueError("num_samples should be a positive integer")
        if not isinstance(replacement, bool):
            raise ValueError("replacement should be a boolean value")
        self.weights = weights
        self.num_samples = num_samples
        self.replacement = replacement

    def __iter__(self):
        idxs = _weighted_sample(self.weights, self.num_samples,
                                self.replacement)
        return iter(idxs.reshape((-1)).tolist())

    def __len__(self):
        mul = np.prod(self.weights.shape) // self.weights.shape[-1]
        return self.num_samples * mul