initializer.py 24.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
import numpy as np
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
20
from .core import VarDesc
W
Wu Yi 已提交
21
from . import unique_name
22
from .imperative import base
23

24
__all__ = [
25 26 27
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
28 29
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
30
]
31

32 33 34 35
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
36 37 38
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
39 40
    Returns:
        bool: the state if we should force init on CPU.
41

Q
qiaolongfei 已提交
42
    Examples:
Q
Qiao Longfei 已提交
43

Q
qiaolongfei 已提交
44 45 46
        .. code-block:: python

            if force_init_on_cpu():
Q
Qiao Longfei 已提交
47
                create_op('force_cpu': force_init_on_cpu())
Q
qiaolongfei 已提交
48 49

    """
50 51 52
    return _force_init_on_cpu_


S
rename  
sneaxiy 已提交
53
@signature_safe_contextmanager
54 55
def init_on_cpu():
    """
Q
qiaolongfei 已提交
56
    Force the variable to be inited on CPU.
57 58

    Examples:
Q
qiaolongfei 已提交
59 60 61 62
        .. code-block:: python

            with init_on_cpu():
                step = layers.create_global_var()
63 64 65 66 67 68 69 70 71

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

72 73 74 75 76 77 78 79 80 81

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
82
    def __init__(self):
83 84 85 86 87 88 89
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

125 126 127

class ConstantInitializer(Initializer):
    """Implements the constant initializer
128 129 130 131 132 133 134 135 136

    Args:
        value (float): constant value to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
137 138
    """

139
    def __init__(self, value=0.0, force_cpu=False):
140 141 142
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
143
        self._force_cpu = force_cpu
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
159
        op = block._prepend_op(
160 161 162 163
            type="fill_constant",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
164
                "dtype": int(var.dtype),
165 166
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
167 168
            },
            stop_gradient=True)
169 170
        if not base.enabled():
            var.op = op
171 172 173 174
        return op


class UniformInitializer(Initializer):
175
    """Implements the random uniform distribution initializer
176 177 178 179 180 181 182 183 184 185 186

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
187 188 189 190 191
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        assert low is not None
        assert high is not None
192
        assert high >= low
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
213 214
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
229
        op = block._prepend_op(
230
            type="uniform_random",
W
Wu Yi 已提交
231
            outputs={"Out": out_var},
232 233
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
234
                "dtype": out_dtype,
235 236 237
                "min": self._low,
                "max": self._high,
                "seed": self._seed
M
minqiyang 已提交
238 239
            },
            stop_gradient=True)
W
Wu Yi 已提交
240 241 242 243 244 245 246 247 248

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

249 250
        if not base.enabled():
            var.op = op
251
        return op
252 253 254


class NormalInitializer(Initializer):
255 256 257 258 259 260 261 262 263 264 265 266
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
292 293
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
308
        op = block._prepend_op(
309
            type="gaussian_random",
W
Wu Yi 已提交
310
            outputs={"Out": out_var},
311 312
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
313
                "dtype": out_dtype,
314 315
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
316 317
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
318 319
            },
            stop_gradient=True)
W
Wu Yi 已提交
320 321 322 323 324 325 326 327

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
328 329
        if not base.enabled():
            var.op = op
330
        return op
331 332


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
352
        super(TruncatedNormalInitializer, self).__init__()
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['truncated_gaussian_random', 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

388 389
        op = block._prepend_op(
            type="truncated_gaussian_random",
390
            outputs={"Out": out_var},
391 392
            attrs={
                "shape": var.shape,
393
                "dtype": out_dtype,
394 395 396
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
397 398
            },
            stop_gradient=True)
399 400 401 402 403 404 405 406

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
407 408
        if not base.enabled():
            var.op = op
409 410 411
        return op


412
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
413
    """
414
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
415 416 417
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
418 419 420

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
421 422 423 424 425 426
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

427
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
428
    is
429

Q
qiaolongfei 已提交
430
    .. math::
431

Q
qiaolongfei 已提交
432
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
433 434


Q
qiaolongfei 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
483 484 485
        if self._seed == 0:
            self._seed = block.program.random_seed

486 487
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
488
            op = block._prepend_op(
489 490 491 492
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
493
                    "dtype": int(var.dtype),
494 495 496
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
497 498
                },
                stop_gradient=True)
499 500 501

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
502
            op = block._prepend_op(
503 504 505 506
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
507
                    "dtype": int(var.dtype),
508 509 510
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
511 512
                },
                stop_gradient=True)
513 514
        if not base.enabled():
            var.op = op
515
        return op
516 517 518 519 520 521


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
584 585 586
        if self._seed == 0:
            self._seed = block.program.random_seed

587 588
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
589
            op = block._prepend_op(
590 591 592 593
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
594
                    "dtype": int(var.dtype),
595 596 597
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
598 599
                },
                stop_gradient=True)
600 601 602

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
603
            op = block._prepend_op(
604 605 606 607
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
608
                    "dtype": int(var.dtype),
609 610 611
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
612 613
                },
                stop_gradient=True)
614 615
        if not base.enabled():
            var.op = op
616
        return op
617 618


619
class BilinearInitializer(Initializer):
620
    """
621 622 623
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    Examples:

        .. code-block:: python

            factor = 2
            w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
                               initializer=Bilinear())
            conv_up = fluid.layers.conv2d_transpose(
                input,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=ceil((factor - 1) / 2.),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
644 645 646 647 648
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
649 650
    interpolation unchanged during training.

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
667
            Operator: the initialization op
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

        if var.dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
            outputs={'Out': [var]},
            attrs={
                'dtype': var.dtype,
                'shape': list(shape),
                value_name: values
            })
713 714
        if not base.enabled():
            var.op = op
715 716 717
        return op


718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array

    Args:
        value (numpy): numpy array to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        dtype = framework.convert_np_dtype_to_dtype_(self._value.dtype)
        if dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in self._value.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in self._value.flat]
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
        if self._value.size > 1024 * 1024 * 5:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
            outputs={'Out': var},
            attrs={
                'dtype': dtype,
768
                'shape': list(self._value.shape),
769 770 771
                value_name: values
            },
            stop_gradient=True)
772 773
        if not base.enabled():
            var.op = op
774 775 776
        return op


777 778 779 780 781 782 783 784 785 786 787 788
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
789
TruncatedNormal = TruncatedNormalInitializer
790 791
Xavier = XavierInitializer
MSRA = MSRAInitializer
792
Bilinear = BilinearInitializer