smallnet_mnist_cifar.py 9.8 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

11 12
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

parameters = []

conv_counter = 1
pool_counter = 1
affine_counter = 1

30

D
dangqingqing 已提交
31 32 33 34 35 36
def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005, act=True):
    global conv_counter
    global parameters
    name = 'conv' + str(conv_counter)
    conv_counter += 1
    with tf.name_scope(name) as scope:
37 38 39 40
        kernel = tf.Variable(
            tf.truncated_normal(
                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
41 42 43 44 45 46

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
47
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
48
        else:
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
        bias = tf.reshape(
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
            conv.get_shape())
D
dangqingqing 已提交
65 66

        conv1 = tf.nn.relu(bias, name=scope) if act else bias
67

D
dangqingqing 已提交
68 69 70 71
        parameters += [kernel, biases]

        return conv1

72

D
dangqingqing 已提交
73 74 75 76 77 78
def _affine(inpOp, nIn, nOut, wd=None, act=True):
    global affine_counter
    global parameters
    name = 'affine' + str(affine_counter)
    affine_counter += 1
    with tf.name_scope(name) as scope:
79 80 81 82
        kernel = tf.Variable(
            tf.truncated_normal(
                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
            name='weights')
D
dangqingqing 已提交
83 84 85 86 87

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

88 89 90 91 92
        biases = tf.Variable(
            tf.constant(
                0.0, shape=[nOut], dtype=tf.float32),
            trainable=True,
            name='biases')
D
dangqingqing 已提交
93

94 95 96
        affine1 = tf.nn.relu_layer(
            inpOp, kernel, biases,
            name=name) if act else tf.matmul(inpOp, kernel) + biases
D
dangqingqing 已提交
97 98 99 100 101

        parameters += [kernel, biases]

        return affine1

102

D
dangqingqing 已提交
103 104 105 106 107 108
def _mpool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
109 110
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
111
    else:
112 113 114 115 116 117 118 119 120
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)
D
dangqingqing 已提交
121 122 123 124 125 126 127 128


def _apool(inpOp, kH, kW, dH, dW, padding):
    global pool_counter
    global parameters
    name = 'pool' + str(pool_counter)
    pool_counter += 1
    if FLAGS.data_format == 'NCHW':
129 130
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
131
    else:
132 133 134 135 136 137 138 139 140 141
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
142 143

def _norm(name, l_input, lsize=4):
144 145 146
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
147
                     alpha=0.001 / 9.0,
148 149 150
                     beta=0.75,
                     name=name)

D
dangqingqing 已提交
151 152 153 154 155 156

def loss(logits, labels):
    batch_size = tf.size(labels)
    labels = tf.expand_dims(labels, 1)
    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
    concated = tf.concat(1, [indices, labels])
157 158 159 160
    onehot_labels = tf.sparse_to_dense(concated,
                                       tf.pack([batch_size, 10]), 1.0, 0.0)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, onehot_labels, name='xentropy')
D
dangqingqing 已提交
161 162 163
    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
    return loss

164

D
dangqingqing 已提交
165 166 167 168 169 170 171 172 173
def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

174

D
dangqingqing 已提交
175
def inference(images):
176 177 178 179 180 181
    conv1 = _conv(images, 3, 32, 5, 5, 1, 1, 'SAME')
    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
    conv2 = _conv(pool1, 32, 32, 5, 5, 1, 1, 'SAME')
    pool2 = _apool(conv2, 3, 3, 2, 2, 'SAME')
    conv3 = _conv(pool2, 32, 64, 5, 5, 1, 1, 'SAME')
    pool3 = _apool(conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
182 183 184 185
    resh1 = tf.reshape(pool3, [-1, 64 * 4 * 4])
    affn1 = _affine(resh1, 64 * 4 * 4, 64)
    affn2 = _affine(affn1, 64, 10, act=False)

186 187 188 189 190 191 192
    print('conv1:', get_incoming_shape(conv1))
    print('pool1:', get_incoming_shape(pool1))
    print('conv2:', get_incoming_shape(conv2))
    print('pool2:', get_incoming_shape(pool2))
    print('conv3:', get_incoming_shape(conv3))
    print('pool3:', get_incoming_shape(pool3))

D
dangqingqing 已提交
193 194 195 196
    return affn2


def time_tensorflow_run(session, target, info_string):
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    if not isinstance(target, list):
        target = [target]
    target_op = tf.group(*target)
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target_op)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))

D
dangqingqing 已提交
219 220

def run_benchmark():
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    global parameters
    with tf.Graph().as_default():
        # Generate some dummy images.
        image_size = 32
        # Note that our padding definition is slightly different the cuda-convnet.
        # In order to force the model to start with the same activations sizes,
        # we add 3 to the image_size and employ VALID padding above.
        if FLAGS.data_format == 'NCHW':
            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
        else:
            image_shape = [FLAGS.batch_size, image_size, image_size, 3]

        images = tf.get_variable(
            'image',
            image_shape,
            initializer=tf.truncated_normal_initializer(
                stddev=0.1, dtype=tf.float32),
            dtype=tf.float32,
            trainable=False)

        labels = tf.get_variable(
            'label', [FLAGS.batch_size],
            initializer=tf.constant_initializer(1),
            dtype=tf.int32,
            trainable=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        last_layer = inference(images)

        objective = loss(last_layer, labels)

        # Compute gradients.
        opt = tf.train.MomentumOptimizer(0.001, 0.9)
        grads = opt.compute_gradients(objective)
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(
                0.0, dtype=tf.float32),
            trainable=False,
            dtype=tf.float32)
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables(
        ))

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        run_forward = True
        run_forward_backward = True
        if FLAGS.forward_only and FLAGS.forward_backward_only:
            raise ValueError("Cannot specify --forward_only and "
                             "--forward_backward_only at the same time.")
        if FLAGS.forward_only:
            run_forward_backward = False
        elif FLAGS.forward_backward_only:
            run_forward = False

        if run_forward:
            # Run the forward benchmark.
            time_tensorflow_run(sess, last_layer, "Forward")

        if run_forward_backward:
            with tf.control_dependencies(
                [apply_gradient_op, variables_averages_op]):
                train_op = tf.no_op(name='train')
            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
D
dangqingqing 已提交
297 298 299


def main(_):
300
    run_benchmark()
D
dangqingqing 已提交
301 302 303


if __name__ == '__main__':
304
    tf.app.run()