pad_op.cc 3.7 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/pad_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
W
wanghaoshuang 已提交
28 29
    auto x_dim = ctx.Input<Tensor>("X")->dims();
    auto paddings = Attr<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
W
wanghaoshuang 已提交
31 32
                      "Size of paddings should be equal to 2 * dimension size "
                      "of input tensor.");
W
wanghaoshuang 已提交
33
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
34 35
    for (int i = 0; i < x_dim.size(); ++i) {
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
36
    }
37 38
    ctx.Output<framework::LoDTensor>("Out")->Resize(
        framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
39 40 41
  }
};

W
wanghaoshuang 已提交
42
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
43
 public:
W
wanghaoshuang 已提交
44
  PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
W
wanghaoshuang 已提交
45
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
46 47 48 49 50
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
              "The output of pad op."
W
wanghaoshuang 已提交
51 52
              "A tensor with the same shape as X.")
        .NotInGradient();
W
wanghaoshuang 已提交
53
    AddComment(R"DOC(
W
wanghaoshuang 已提交
54 55 56 57 58 59 60 61 62
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[1, 2],
   [3, 4]]

and 

W
wanghaoshuang 已提交
63
paddings = [0, 1, 1, 2]
W
wanghaoshuang 已提交
64 65 66 67 68 69 70 71 72 73

and
 
pad_value = 0 

then we get 

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
W
wanghaoshuang 已提交
74
)DOC");
W
wanghaoshuang 已提交
75 76
    AddAttr<std::vector<int>>(
        "paddings",
W
wanghaoshuang 已提交
77 78
        "A list<int> to describes padding rules for each dimension."
        " For 2-D image tensor, paddings=[0, 1, 2, 3] means"
W
wanghaoshuang 已提交
79
        " padding 0 row to top, 1 row to bottom, 2 columns to left"
W
wanghaoshuang 已提交
80 81
        " and 3 columns to right.Size of paddings should be equal to"
        " 2 * dimension size of input tensor.");
W
wanghaoshuang 已提交
82 83
    AddAttr<float>("pad_value",
                   "(float) default to 0; "
W
wanghaoshuang 已提交
84
                   "The value to fill padded areas.")
W
wanghaoshuang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
        .SetDefault(0.0f);
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
99 100 101
    auto *x_g = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (x_g != nullptr) {
      x_g->Resize(x_dims);
W
wanghaoshuang 已提交
102
    }
W
wanghaoshuang 已提交
103 104 105 106 107 108 109 110 111 112 113
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
                       ops::PadGradKernel<paddle::platform::CPUPlace, float>);