brpc_service_sparse_sgd_test.cc 10.8 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unistd.h>
#include <string>
#include <thread>  // NOLINT

#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
21 22 23
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
#include "paddle/fluid/distributed/ps/service/brpc_ps_server.h"
#include "paddle/fluid/distributed/ps/service/env.h"
24 25
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/place.h"
26
#include "paddle/phi/kernels/funcs/math_function.h"
27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace distributed {
class DownpourBrpcClosure;
class PSClient;
class PSServer;
}  // namespace distributed
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
T
tangwei12 已提交
38

39
namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

T
tangwei12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace memory = paddle::memory;
namespace distributed = paddle::distributed;

void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
  auto x_var = scope->Var("x");
  x_var->GetMutable<framework::LoDTensor>();
}

void InitTensorsOnClient(framework::Scope* scope, platform::CPUPlace* place,
                         int64_t rows_numel) {
  CreateVarsOnScope(scope, place);

  auto x_var = scope->Var("x")->GetMutable<framework::LoDTensor>();
  float* x_ptr =
      x_var->mutable_data<float>(framework::DDim({1, rows_numel}), *place);
  for (int64_t i = 0; i < rows_numel; ++i) x_ptr[i] = 1.0;
}

void GetDownpourSparseTableProto(
    ::paddle::distributed::TableParameter* sparse_table_proto) {
  sparse_table_proto->set_table_id(0);
  sparse_table_proto->set_table_class("CommonSparseTable");
  sparse_table_proto->set_shard_num(256);
  sparse_table_proto->set_type(::paddle::distributed::PS_SPARSE_TABLE);
  ::paddle::distributed::TableAccessorParameter* accessor_proto =
      sparse_table_proto->mutable_accessor();
  ::paddle::distributed::CommonAccessorParameter* common_proto =
      sparse_table_proto->mutable_common();

  accessor_proto->set_accessor_class("CommMergeAccessor");
  accessor_proto->set_fea_dim(0);
  accessor_proto->set_embedx_dim(10);

  common_proto->set_name("sgd");
  common_proto->set_table_name("MergedDense");
  common_proto->set_trainer_num(1);
  common_proto->set_sync(false);
T
tangwei12 已提交
83
  common_proto->set_entry("none");
T
tangwei12 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  common_proto->add_params("Param");
  common_proto->add_dims(10);
  common_proto->add_initializers("uniform_random&0&-1.0&1.0");
  common_proto->add_params("LearningRate");
  common_proto->add_dims(1);
  common_proto->add_initializers("fill_constant&1.0");
}

::paddle::distributed::PSParameter GetServerProto() {
  // Generate server proto desc
  ::paddle::distributed::PSParameter server_fleet_desc;
  ::paddle::distributed::ServerParameter* server_proto =
      server_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
101
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* sparse_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(sparse_table_proto);
  return server_fleet_desc;
}

::paddle::distributed::PSParameter GetWorkerProto() {
  ::paddle::distributed::PSParameter worker_fleet_desc;
  ::paddle::distributed::WorkerParameter* worker_proto =
      worker_fleet_desc.mutable_worker_param();

  ::paddle::distributed::DownpourWorkerParameter* downpour_worker_proto =
      worker_proto->mutable_downpour_worker_param();

  ::paddle::distributed::TableParameter* worker_sparse_table_proto =
      downpour_worker_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(worker_sparse_table_proto);

  ::paddle::distributed::ServerParameter* server_proto =
      worker_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
131
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* server_sparse_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourSparseTableProto(server_sparse_table_proto);

  return worker_fleet_desc;
}

/*-------------------------------------------------------------------------*/

std::string ip_ = "127.0.0.1";
uint32_t port_ = 4209;

std::vector<std::string> host_sign_list_;

std::shared_ptr<paddle::distributed::PSServer> pserver_ptr_;

std::shared_ptr<paddle::distributed::PSClient> worker_ptr_;

void RunServer() {
  ::paddle::distributed::PSParameter server_proto = GetServerProto();

  auto _ps_env = paddle::distributed::PaddlePSEnvironment();
  _ps_env.set_ps_servers(&host_sign_list_, 1);
  pserver_ptr_ = std::shared_ptr<paddle::distributed::PSServer>(
      paddle::distributed::PSServerFactory::create(server_proto));
162 163 164 165
  std::vector<framework::ProgramDesc> empty_vec;
  framework::ProgramDesc empty_prog;
  empty_vec.push_back(empty_prog);
  pserver_ptr_->configure(server_proto, _ps_env, 0, empty_vec);
T
tangwei12 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  pserver_ptr_->start(ip_, port_);
}

void RunClient(std::map<uint64_t, std::vector<paddle::distributed::Region>>&
                   dense_regions) {
  ::paddle::distributed::PSParameter worker_proto = GetWorkerProto();
  paddle::distributed::PaddlePSEnvironment _ps_env;
  auto servers_ = host_sign_list_.size();
  _ps_env = paddle::distributed::PaddlePSEnvironment();
  _ps_env.set_ps_servers(&host_sign_list_, servers_);
  worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
      paddle::distributed::PSClientFactory::create(worker_proto));
  worker_ptr_->configure(worker_proto, dense_regions, _ps_env, 0);
}

void RunBrpcPushSparse() {
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
  auto ph_host = paddle::distributed::PSHost(ip_, port_, 0);
  host_sign_list_.push_back(ph_host.serialize_to_string());

  // Srart Server
  std::thread server_thread(RunServer);
  sleep(1);

  // Start Client
  framework::Scope client_scope;
  platform::CPUPlace place;
  InitTensorsOnClient(&client_scope, &place, 100);
  std::map<uint64_t, std::vector<paddle::distributed::Region>> dense_regions;
  dense_regions.insert(
      std::pair<uint64_t, std::vector<paddle::distributed::Region>>(0, {}));
  auto regions = dense_regions[0];
  framework::Variable* var = client_scope.FindVar("x");
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  RunClient(dense_regions);
  std::vector<uint64_t> fea_keys(10);
  std::vector<float> fea_values(100);
  std::vector<float> fea_temp_values(100);
  std::vector<float*> fea_value_ptr(10);
  std::vector<float*> fea_temp_value_ptr(10);

  for (size_t idx = 0; idx < fea_keys.size(); ++idx) {
    fea_keys[idx] = (uint64_t)idx;
    fea_value_ptr[idx] = fea_values.data() + idx * 10;
    fea_temp_value_ptr[idx] = fea_temp_values.data() + idx * 10;
  }

  /*-----------------------Test Server Init----------------------------------*/
  LOG(INFO) << "Run pull_sparse_param";
217 218
  auto pull_status = worker_ptr_->pull_sparse(
      fea_value_ptr.data(), 0, fea_keys.data(), fea_keys.size(), true);
T
tangwei12 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231
  pull_status.wait();
  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    fea_values.data()[idx] *= 2.0;
  }

  /*-----------------------Test Push Param----------------------------------*/

  LOG(INFO) << "Run push_sparse_param";
  paddle::distributed::DownpourBrpcClosure* closure_push_param =
      new paddle::distributed::DownpourBrpcClosure(1, [&](void* done) {
        int ret = 0;
        auto* closure = (paddle::distributed::DownpourBrpcClosure*)done;
        for (size_t i = 0; i < 1; ++i) {
T
tangwei12 已提交
232 233
          if (closure->check_response(
                  i, paddle::distributed::PS_PUSH_SPARSE_PARAM) != 0) {
T
tangwei12 已提交
234 235 236 237 238 239 240 241 242 243 244 245
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
  auto push_status = worker_ptr_->push_sparse_param(
      0, fea_keys.data(), (const float**)fea_value_ptr.data(), fea_keys.size(),
      closure_push_param);
  push_status.wait();

  auto pull_param_status = worker_ptr_->pull_sparse(
246
      fea_temp_value_ptr.data(), 0, fea_keys.data(), fea_keys.size(), true);
T
tangwei12 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
  pull_param_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(fea_temp_values[idx], fea_values[idx]);
  }

  /*-----------------------Test Push Grad----------------------------------*/

  paddle::distributed::DownpourBrpcClosure* closure_push_grad =
      new paddle::distributed::DownpourBrpcClosure(1, [&](void* done) {
        int ret = 0;
        auto* closure = (paddle::distributed::DownpourBrpcClosure*)done;
        for (size_t i = 0; i < 1; ++i) {
T
tangwei12 已提交
260 261
          if (closure->check_response(
                  i, paddle::distributed::PS_PUSH_SPARSE_TABLE) != 0) {
T
tangwei12 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });

  LOG(INFO) << "Run pull_sparse_grad";
  std::vector<float*> push_g_vec;
  for (auto i = 0; i < static_cast<int>(fea_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * 10);
  }
  auto push_grad_status = worker_ptr_->push_sparse_raw_gradient(
      0, fea_keys.data(), (const float**)push_g_vec.data(), fea_keys.size(),
      closure_push_grad);
  push_grad_status.wait();

  auto pull_update_status = worker_ptr_->pull_sparse(
280
      fea_temp_value_ptr.data(), 0, fea_keys.data(), fea_keys.size(), true);
T
tangwei12 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294
  pull_update_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(fea_temp_values[idx], fea_values[idx] - 1.0);
  }

  LOG(INFO) << "Run stop_server";
  worker_ptr_->stop_server();
  LOG(INFO) << "Run finalize_worker";
  worker_ptr_->finalize_worker();
  server_thread.join();
}

TEST(RunBrpcPushSparse, Run) { RunBrpcPushSparse(); }