sparse.h 7.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>  // for sqrt in CPU and CUDA
#include <functional>
#include <memory>
#include <string>
T
tangwei12 已提交
21
#include <unordered_map>
T
tangwei12 已提交
22 23
#include <utility>
#include <vector>
24
#include "gflags/gflags.h"
T
tangwei12 已提交
25 26

#include "paddle/fluid/distributed/common/utils.h"
27
#include "paddle/fluid/distributed/ps/table/depends/large_scale_kv.h"
T
tangwei12 已提交
28 29 30 31 32 33

namespace paddle {
namespace distributed {

class SparseOptimizer {
 public:
T
tangwei12 已提交
34 35 36 37 38 39 40 41 42
  explicit SparseOptimizer(
      const std::vector<std::string>& value_names,
      const std::vector<int>& value_dims, const std::vector<int>& value_offsets,
      const std::unordered_map<std::string, int>& value_idx)
      : value_names_(value_names),
        value_dims_(value_dims),
        value_offsets_(value_offsets),
        value_idx_(value_idx) {}

T
tangwei12 已提交
43 44 45
  virtual void update(const uint64_t* keys, const float* update_values,
                      size_t num, const std::vector<uint64_t>& offsets,
                      ValueBlock* block) = 0;
T
tangwei12 已提交
46

47 48
  virtual void set_global_lr(float* lr) { global_learning_rate_ = lr; }

T
tangwei12 已提交
49 50 51 52 53 54
  const std::vector<std::string>& value_names_;
  const std::vector<int>& value_dims_;
  const std::vector<int>& value_offsets_;
  const std::unordered_map<std::string, int>& value_idx_;
  int param_offset = 0;
  int update_numel = 0;
55 56 57

 protected:
  float* global_learning_rate_;
T
tangwei12 已提交
58 59 60 61 62
};

// sum calc for sparse tensor
class SSUM : public SparseOptimizer {
 public:
T
tangwei12 已提交
63 64 65 66 67 68 69 70
  explicit SSUM(const std::vector<std::string>& value_names,
                const std::vector<int>& value_dims,
                const std::vector<int>& value_offsets,
                const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);
T
tangwei12 已提交
71 72 73 74 75 76 77 78
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
79
      if (!block->GetEntry(id)) continue;
T
tangwei12 已提交
80 81 82
      auto* value = block->Get(id);
      float* param = value + param_offset;
      blas.VADD(update_numel, update_values + x * update_numel, param, param);
T
tangwei12 已提交
83 84 85 86 87 88 89
    }
  }
};

// sgd optimzer for sparse tensor
class SSGD : public SparseOptimizer {
 public:
T
tangwei12 已提交
90 91 92 93 94 95 96 97 98 99 100
  explicit SSGD(const std::vector<std::string>& value_names,
                const std::vector<int>& value_dims,
                const std::vector<int>& value_offsets,
                const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);

    idx = value_idx.at("LearningRate");
    lr_offset = value_offsets.at(idx);
T
tangwei12 已提交
101 102 103 104 105 106 107 108
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
109
      if (!block->GetEntry(id)) continue;
T
tangwei12 已提交
110 111
      auto* value = block->Get(id);

112
      float learning_rate = *(global_learning_rate_) * (value + lr_offset)[0];
T
tangwei12 已提交
113
      float* param = value + param_offset;
T
tangwei12 已提交
114 115 116 117

      std::vector<float> grads;
      grads.resize(update_numel);
      blas.VCOPY(update_numel, update_values + x * update_numel, grads.data());
118
      blas.SCAL(update_numel, learning_rate, grads.data());
T
tangwei12 已提交
119 120 121 122
      blas.VSUB(update_numel, param, grads.data(), param);
    }
  }

T
tangwei12 已提交
123
  int lr_offset;
T
tangwei12 已提交
124 125 126 127 128
};

// adam optimzer for sparse tensor
class SAdam : public SparseOptimizer {
 public:
T
tangwei12 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  explicit SAdam(const std::vector<std::string>& value_names,
                 const std::vector<int>& value_dims,
                 const std::vector<int>& value_offsets,
                 const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);

    idx = value_idx.at("LearningRate");
    lr_offset = value_offsets.at(idx);

    idx = value_idx.at("Moment1");
    m1_offset = value_offsets.at(idx);

    idx = value_idx.at("Moment2");
    m2_offset = value_offsets.at(idx);

    idx = value_idx.at("Beta1Pow");
    beta1_pow_offset = value_offsets.at(idx);

    idx = value_idx.at("Beta2Pow");
    beta2_pow_offset = value_offsets.at(idx);
T
tangwei12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
165
      if (!block->GetEntry(id)) continue;
T
tangwei12 已提交
166
      auto* values = block->Get(id);
167
      float lr_ = *(global_learning_rate_) * (values + lr_offset)[0];
T
tangwei12 已提交
168 169 170 171 172
      float* param = values + param_offset;
      float* moment1 = values + m1_offset;
      float* moment2 = values + m2_offset;
      float* beta1_pow = values + beta1_pow_offset;
      float* beta2_pow = values + beta2_pow_offset;
T
tangwei12 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

      beta1_pow[0] = beta1_pow[0] * beta1;
      beta2_pow[0] = beta2_pow[0] * beta2;

      lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

      std::vector<float> grad, grad2, tmp;
      grad.resize(update_numel);
      grad2.resize(update_numel);
      tmp.resize(update_numel);

      blas.VCOPY(update_numel, update_values + x * update_numel, grad.data());
      blas.VCOPY(update_numel, update_values + x * update_numel, grad2.data());

      blas.SCAL(update_numel, 1 - beta1, grad.data());
      blas.VSQUARE(update_numel, grad2.data(), grad2.data());
      blas.SCAL(update_numel, 1 - beta2, grad2.data());

      blas.SCAL(update_numel, beta1, moment1);
      blas.VADD(update_numel, moment1, grad.data(), moment1);
      blas.SCAL(update_numel, beta2, moment2);
      blas.VADD(update_numel, moment2, grad2.data(), moment2);

      float* tmp_ = tmp.data();
      float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

      SQRT<float>(update_numel, moment2, tmp_);
      ADD<float>(update_numel, tmp_, eps_, tmp_);

      blas.VDIV(update_numel, moment1, tmp_, tmp_);
      blas.SCAL(update_numel, lr_, tmp_);
      blas.VSUB(update_numel, param, tmp_, param);
    }
  }

T
tangwei12 已提交
208 209 210 211 212 213
  int lr_offset;
  int m1_offset;
  int m2_offset;
  int beta1_pow_offset;
  int beta2_pow_offset;

T
tangwei12 已提交
214 215 216 217 218 219 220
  float beta1;
  float beta2;
  float epsilon;
};

}  // namespace distributed
}  // namespace paddle