detection.py 37.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18
from layer_function_generator import generate_layer_fn
19
from layer_function_generator import autodoc
20
from ..layer_helper import LayerHelper
21 22
import tensor
import nn
C
chengduoZH 已提交
23
import math
24

C
chengduoZH 已提交
25
__all__ = [
26
    'prior_box',
C
chengduoZH 已提交
27
    'multi_box_head',
28 29 30 31
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
32
    'detection_map',
C
chengduoZH 已提交
33
]
34

35 36 37
__auto__ = [
    'iou_similarity',
    'box_coder',
C
chengduoZH 已提交
38
]
39

40 41 42 43 44
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

45

Y
Yuan Gao 已提交
46 47
def detection_output(loc,
                     scores,
48 49 50 51 52 53 54 55 56
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
57
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
58

59 60
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
61

62 63 64 65 66 67
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
68 69 70 71 72 73

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
74 75 76 77
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
100 101 102
        Variable: 
        
            The detection outputs is a LoDTensor with shape [No, 6].
103 104 105 106 107 108 109 110
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
111 112 113 114

    Examples:
        .. code-block:: python

115
            pb = layers.data(name='prior_box', shape=[10, 4],
116
                         append_batch_size=False, dtype='float32')
117
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
118
                          append_batch_size=False, dtype='float32')
119
            loc = layers.data(name='target_box', shape=[2, 21, 4],
120
                          append_batch_size=False, dtype='float32')
121
            scores = layers.data(name='scores', shape=[2, 21, 10],
122
                          append_batch_size=False, dtype='float32')
123
            nmsed_outs = fluid.layers.detection_output(scores=scores,
124 125 126 127 128
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
129 130 131 132 133
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
134
    old_shape = scores.shape
C
caoying03 已提交
135
    scores = nn.reshape(x=scores, shape=(-1, old_shape[-1]))
136
    scores = nn.softmax(input=scores)
C
caoying03 已提交
137
    scores = nn.reshape(x=scores, shape=old_shape)
Y
Yuan Gao 已提交
138
    scores = nn.transpose(scores, perm=[0, 2, 1])
139
    scores.stop_gradient = True
140
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
141 142 143 144 145 146 147 148 149 150 151 152 153
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
154
    nmsed_outs.stop_gradient = True
155
    return nmsed_outs
C
chengduoZH 已提交
156 157


158 159 160
@autodoc()
def detection_map(detect_res,
                  label,
161 162
                  class_num,
                  background_label=0,
163 164
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
165 166 167 168
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
169 170
    helper = LayerHelper("detection_map", **locals())

171 172 173 174 175 176 177 178 179 180 181 182 183 184
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

185 186 187 188 189
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
190
            'HasState': has_state,
191 192 193 194 195 196 197 198 199 200 201 202 203
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
204 205
            'ap_type': ap_version,
            'class_num': class_num,
206
        })
207
    return map_out
208 209


210 211 212 213
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
214
    """
Y
yuyang18 已提交
215 216
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
217
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
218 219 220 221 222 223 224 225
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
226 227 228
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
229

Y
yuyang18 已提交
230
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
231 232 233
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
234 235 236
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

237 238 239 240 241
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
242 243 244 245 246 247
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
248
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
249
           'bipartite' or 'per_prediction'. [default 'bipartite'].
250 251
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
252
            on the maximum distance, 0.5 by default.
253
    Returns:
Y
yuyang18 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
277 278 279 280 281 282 283
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
284 285 286 287
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
305

306 307 308 309 310
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
311

312
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
313

314 315 316
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
317

318 319
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
320

321
        Otherwise,
C
chengduoZH 已提交
322

323 324
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
325

326
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
327

328 329
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
330 331
    
    .. code-block:: text
C
chengduoZH 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        tuple: 
        
               A tuple(out, out_weight) is returned. out is a 3D Tensor with 
               shape [N, P, K], N and P is the same as they are in 
               `neg_indices`, K is the same as it in input of X. If 
               `match_indices[i][j]`. out_weight is the weight for output with 
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
396
             normalize=True,
397 398
             sample_size=None):
    """
Y
yuyang18 已提交
399
    **Multi-box loss layer for object detection algorithm of SSD**
400 401 402 403 404 405 406

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
407
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
408

409
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
410

411
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
412

413
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
414

415
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
416

417
      2.2. Compute confidence loss.
Y
yuyang18 已提交
418

419 420
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
421

422
    4. Assign classification and regression targets
Y
yuyang18 已提交
423

424
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
425

426
      4.2. Assign regression targets.
Y
yuyang18 已提交
427

428
      4.3. Assign classification targets.
Y
yuyang18 已提交
429

430
    5. Compute the overall objective loss.
Y
yuyang18 已提交
431

432
      5.1 Compute confidence loss.
Y
yuyang18 已提交
433

434
      5.1 Compute localization loss.
Y
yuyang18 已提交
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
459
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
460
        neg_overlap (float): The negative overlap upper bound for the unmatched
461
            predictions. Use only when mining_type is 'max_negative',
462 463 464 465
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
466
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
467 468
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
469
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
470
            of output locations, True by default.
471 472
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
473 474

    Returns:
Y
yuyang18 已提交
475 476
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
477 478

    Raises:
Y
yuyang18 已提交
479 480
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
500 501 502 503 504 505 506 507 508
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape

    def __reshape_to_2d(var):
C
caoying03 已提交
509
        return nn.reshape(x=var, shape=[-1, var.shape[-1]])
510 511 512 513 514

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
515 516
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
517 518 519

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
C
caoying03 已提交
520
    gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, ))
521
    gt_label.stop_gradient = True
522 523 524 525 526 527 528
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
529
    target_label.stop_gradient = True
530 531 532
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)

    # 3. Mining hard examples
C
caoying03 已提交
533
    conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior))
534
    conf_loss.stop_gradient = True
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_pos_ratio,
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
578

579 580 581 582
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

583 584 585 586
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

587 588 589 590 591 592 593 594
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

595 596 597 598
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

599 600
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
601
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
C
caoying03 已提交
602
    loss = nn.reshape(x=loss, shape=[-1, num_prior])
603 604 605 606 607
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

608
    return loss
C
chengduoZH 已提交
609 610


611 612 613 614
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
615
              aspect_ratios=[1.],
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
              name=None):
    """
    **Prior box operator**

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
635
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
636 637
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
638 639
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
640 641 642 643
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
644
       step(list|turple): Prior boxes step across width and height, If
645
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
646 647
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        boxes(Variable): the output prior boxes of PriorBox.
             The layout is [H, W, num_priors, 4].
             H is the height of input, W is the width of input,
             num_priors is the total
             box count of each position of input.
        Variances(Variable): the expanded variances of PriorBox.
             The layout is [H, W, num_priors, 4].
             H is the height of input, W is the width of input
             num_priors is the total
             box count of each position of input


    Examples:
        .. code-block:: python
            box, var = prior_box(
            input=conv1,
            image=images,
            min_sizes=[100.],
            flip=True,
            clip=True)
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

691 692 693 694 695 696 697 698 699 700 701
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
702 703
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
720
def multi_box_head(inputs,
C
chengduoZH 已提交
721 722
                   image,
                   base_size,
C
chengduoZH 已提交
723
                   num_classes,
C
chengduoZH 已提交
724
                   aspect_ratios,
725 726
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
727 728
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
729 730 731 732
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
733 734
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
735
                   clip=False,
C
chengduoZH 已提交
736
                   kernel_size=1,
C
chengduoZH 已提交
737
                   pad=0,
C
chengduoZH 已提交
738
                   stride=1,
C
chengduoZH 已提交
739
                   name=None):
C
chengduoZH 已提交
740
    """
C
chengduoZH 已提交
741
    **Prior_boxes**
C
chengduoZH 已提交
742

C
chengduoZH 已提交
743 744 745 746
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
    section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
747 748

    Args:
749
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
750
            of all Variables is NCHW.
C
chengduoZH 已提交
751 752
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
753 754
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
777
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
778 779 780 781 782 783
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
C
chengduoZH 已提交
784 785

    Returns:
Y
Yuan Gao 已提交
786 787 788 789 790 791 792
        mbox_loc(Variable): The predicted boxes' location of the inputs.
             The layout is [N, H*W*Priors, 4]. where Priors
             is the number of predicted boxes each position of each input.
        mbox_conf(Variable): The predicted boxes' confidence of the inputs.
             The layout is [N, H*W*Priors, C]. where Priors
             is the number of predicted boxes each position of each input
             and C is the number of Classes.
C
chengduoZH 已提交
793 794 795 796 797 798 799
        boxes(Variable): the output prior boxes of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs.
        Variances(Variable): the expanded variances of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs

C
chengduoZH 已提交
800 801 802

    Examples:
        .. code-block:: python
C
chengduoZH 已提交
803 804 805 806 807 808 809 810 811 812 813
          mbox_locs, mbox_confs, box, var = layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
814 815
    """

C
chengduoZH 已提交
816 817 818 819 820 821 822
    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError("The axis should be smaller than "
                             "the arity of input and bigger than 0.")
        new_shape = [
            -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
        ]
C
caoying03 已提交
823
        out = nn.reshape(x=input, shape=new_shape)
C
chengduoZH 已提交
824
        return out
825

826 827
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
828

C
chengduoZH 已提交
829 830 831 832
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

833 834
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
835

C
chengduoZH 已提交
836 837 838 839 840
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
841
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
842 843 844 845 846 847 848 849 850
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
874 875
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
876 877
    box_results = []
    var_results = []
C
chengduoZH 已提交
878 879
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
880 881
        max_size = max_sizes[i]

882
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
883
            min_size = [min_size]
C
chengduoZH 已提交
884 885
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
886 887 888 889

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
890
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
891
                aspect_ratio = [aspect_ratio]
892
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
893

894 895
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
                             variance, flip, clip, step, offset)
C
chengduoZH 已提交
896 897 898 899 900

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
901

902
        # get loc
Y
Yuan Gao 已提交
903
        num_loc_output = num_boxes * 4
904
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
905
            input=input,
906 907 908 909 910
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

911
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
912 913 914 915
        new_shape = [
            mbox_loc.shape[0],
            mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
        ]
C
caoying03 已提交
916
        mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape)
Y
Yuan Gao 已提交
917
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
918

919
        # get conf
C
chengduoZH 已提交
920
        num_conf_output = num_boxes * num_classes
921
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
922
            input=input,
923 924 925 926
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
927
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
928 929 930 931
        new_shape = [
            conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
            conf_loc.shape[3] / num_classes, num_classes
        ]
C
caoying03 已提交
932
        conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape)
Y
Yuan Gao 已提交
933
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
934

C
chengduoZH 已提交
935 936 937
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
938 939
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
940 941 942 943 944 945 946 947 948
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
949 950
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
951

952 953
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
954
    return mbox_locs_concat, mbox_confs_concat, box, var