brpc_service_dense_sgd_test.cc 10.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unistd.h>
16

T
tangwei12 已提交
17 18 19 20
#include <string>
#include <thread>  // NOLINT

#include "gtest/gtest.h"
21 22
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
#include "paddle/fluid/distributed/ps/service/brpc_ps_server.h"
23
#include "paddle/fluid/framework/program_desc.h"
T
tangwei12 已提交
24 25
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
26
#include "paddle/phi/kernels/funcs/math_function.h"
T
tangwei12 已提交
27

28 29 30 31 32 33 34 35 36 37
namespace paddle {
namespace distributed {
class DownpourBrpcClosure;
class PSClient;
class PSServer;
}  // namespace distributed
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle
T
tangwei12 已提交
38

39
namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

T
tangwei12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace memory = paddle::memory;
namespace distributed = paddle::distributed;

void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
  auto x_var = scope->Var("x");
  x_var->GetMutable<framework::LoDTensor>();
}

void InitTensorsOnClient(framework::Scope* scope, platform::CPUPlace* place,
                         int64_t rows_numel) {
  CreateVarsOnScope(scope, place);

  auto x_var = scope->Var("x")->GetMutable<framework::LoDTensor>();
  float* x_ptr =
      x_var->mutable_data<float>(framework::DDim({1, rows_numel}), *place);
  for (int64_t i = 0; i < rows_numel; ++i) x_ptr[i] = 1.0 * (float)i;
}

void GetDownpourDenseTableProto(
    ::paddle::distributed::TableParameter* dense_table_proto) {
  dense_table_proto->set_table_id(0);
67
  dense_table_proto->set_table_class("MemoryDenseTable");
T
tangwei12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  dense_table_proto->set_shard_num(256);
  dense_table_proto->set_type(::paddle::distributed::PS_DENSE_TABLE);
  ::paddle::distributed::TableAccessorParameter* accessor_proto =
      dense_table_proto->mutable_accessor();
  ::paddle::distributed::CommonAccessorParameter* common_proto =
      dense_table_proto->mutable_common();

  accessor_proto->set_accessor_class("CommMergeAccessor");
  accessor_proto->set_fea_dim(100);
  accessor_proto->set_embedx_dim(1);

  common_proto->set_name("sgd");
  common_proto->set_table_name("MergedDense");
  common_proto->set_trainer_num(1);
  common_proto->set_sync(false);
  common_proto->add_params("Param");
  common_proto->add_dims(100);
  common_proto->add_initializers("fill_constant&1.0");
  common_proto->add_params("LearningRate");
  common_proto->add_dims(1);
  common_proto->add_initializers("fill_constant&1.0");
}

::paddle::distributed::PSParameter GetServerProto() {
  // Generate server proto desc
  ::paddle::distributed::PSParameter server_fleet_desc;
  ::paddle::distributed::ServerParameter* server_proto =
      server_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
100
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* dense_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourDenseTableProto(dense_table_proto);
  return server_fleet_desc;
}

::paddle::distributed::PSParameter GetWorkerProto() {
  ::paddle::distributed::PSParameter worker_fleet_desc;
  ::paddle::distributed::WorkerParameter* worker_proto =
      worker_fleet_desc.mutable_worker_param();

  ::paddle::distributed::DownpourWorkerParameter* downpour_worker_proto =
      worker_proto->mutable_downpour_worker_param();

  ::paddle::distributed::TableParameter* worker_dense_table_proto =
      downpour_worker_proto->add_downpour_table_param();
  GetDownpourDenseTableProto(worker_dense_table_proto);

  ::paddle::distributed::ServerParameter* server_proto =
      worker_fleet_desc.mutable_server_param();
  ::paddle::distributed::DownpourServerParameter* downpour_server_proto =
      server_proto->mutable_downpour_server_param();
  ::paddle::distributed::ServerServiceParameter* server_service_proto =
      downpour_server_proto->mutable_service_param();
T
tangwei12 已提交
130
  server_service_proto->set_service_class("BrpcPsService");
T
tangwei12 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  server_service_proto->set_server_class("BrpcPsServer");
  server_service_proto->set_client_class("BrpcPsClient");
  server_service_proto->set_start_server_port(0);
  server_service_proto->set_server_thread_num(12);

  ::paddle::distributed::TableParameter* server_dense_table_proto =
      downpour_server_proto->add_downpour_table_param();
  GetDownpourDenseTableProto(server_dense_table_proto);

  return worker_fleet_desc;
}

/*-------------------------------------------------------------------------*/

std::string ip_ = "127.0.0.1";
uint32_t port_ = 4214;

std::vector<std::string> host_sign_list_;

std::shared_ptr<paddle::distributed::PSServer> pserver_ptr_;

std::shared_ptr<paddle::distributed::PSClient> worker_ptr_;

void RunServer() {
  ::paddle::distributed::PSParameter server_proto = GetServerProto();

  auto _ps_env = paddle::distributed::PaddlePSEnvironment();
  LOG(INFO) << "RUN set_ps_servers";
Z
zhaocaibei123 已提交
159
  _ps_env.SetPsServers(&host_sign_list_, 1);
T
tangwei12 已提交
160
  pserver_ptr_ = std::shared_ptr<paddle::distributed::PSServer>(
Z
zhaocaibei123 已提交
161
      paddle::distributed::PSServerFactory::Create(server_proto));
T
tangwei12 已提交
162
  LOG(INFO) << "RUN configure";
163 164 165
  std::vector<framework::ProgramDesc> empty_vec;
  framework::ProgramDesc empty_prog;
  empty_vec.push_back(empty_prog);
Z
zhaocaibei123 已提交
166
  pserver_ptr_->Configure(server_proto, _ps_env, 0, empty_vec);
T
tangwei12 已提交
167
  LOG(INFO) << "RUN start";
Z
zhaocaibei123 已提交
168
  pserver_ptr_->Start(ip_, port_);
T
tangwei12 已提交
169 170 171 172 173 174 175 176 177 178
  LOG(INFO) << "End start";
}

void RunClient(std::map<uint64_t, std::vector<paddle::distributed::Region>>&
                   dense_regions) {
  ::paddle::distributed::PSParameter worker_proto = GetWorkerProto();
  paddle::distributed::PaddlePSEnvironment _ps_env;
  auto servers_ = host_sign_list_.size();
  _ps_env = paddle::distributed::PaddlePSEnvironment();
  LOG(INFO) << "Run set_ps_servers";
Z
zhaocaibei123 已提交
179
  _ps_env.SetPsServers(&host_sign_list_, servers_);
T
tangwei12 已提交
180 181
  LOG(INFO) << "Run Create PSClient";
  worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
Z
zhaocaibei123 已提交
182
      paddle::distributed::PSClientFactory::Create(worker_proto));
T
tangwei12 已提交
183
  LOG(INFO) << "Run configure";
Z
zhaocaibei123 已提交
184
  worker_ptr_->Configure(worker_proto, dense_regions, _ps_env, 0);
T
tangwei12 已提交
185 186 187 188 189 190
}

void RunBrpcPushDense() {
  setenv("http_proxy", "", 1);
  setenv("https_proxy", "", 1);
  auto ph_host = paddle::distributed::PSHost(ip_, port_, 0);
Z
zhaocaibei123 已提交
191
  host_sign_list_.push_back(ph_host.SerializeToString());
T
tangwei12 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  // Srart Server
  std::thread server_thread(RunServer);
  sleep(1);

  // Start Client
  LOG(INFO) << "Run InitTensorsOnClient";
  framework::Scope client_scope;
  platform::CPUPlace place;
  InitTensorsOnClient(&client_scope, &place, 100);
  std::map<uint64_t, std::vector<paddle::distributed::Region>> dense_regions;
  dense_regions.insert(
      std::pair<uint64_t, std::vector<paddle::distributed::Region>>(0, {}));
  auto regions = dense_regions[0];
  framework::Variable* var = client_scope.FindVar("x");
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();
  float* w = tensor->data<float>();
  paddle::distributed::Region reg(w, tensor->numel());
  regions.emplace_back(std::move(reg));

  LOG(INFO) << "Run RunClient";
  RunClient(dense_regions);

  /*-----------------------Test Server Init----------------------------------*/
  LOG(INFO) << "Run pull_dense_param";
  float* temp = new float[tensor->numel()]();
  std::vector<paddle::distributed::Region> temp_region;
  paddle::distributed::Region temp_reg(temp, tensor->numel());
  temp_region.emplace_back(std::move(temp_reg));
  auto pull_status =
Z
zhaocaibei123 已提交
222
      worker_ptr_->PullDense(temp_region.data(), temp_region.size(), 0);
T
tangwei12 已提交
223 224 225 226 227 228 229 230 231 232
  pull_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(temp[idx], 1.0);
  }

  /*-----------------------Test Push Param----------------------------------*/

  LOG(INFO) << "Run push_dense_param";
  auto push_status =
Z
zhaocaibei123 已提交
233
      worker_ptr_->PushDenseParam(regions.data(), regions.size(), 0);
T
tangwei12 已提交
234 235
  push_status.wait();

Z
zhaocaibei123 已提交
236
  pull_status = worker_ptr_->PullDense(regions.data(), regions.size(), 0);
T
tangwei12 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
  pull_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(w[idx], float(idx));
  }

  /*-----------------------Test Push Grad----------------------------------*/

  paddle::distributed::DownpourBrpcClosure* closure =
      new paddle::distributed::DownpourBrpcClosure(1, [&](void* done) {
        int ret = 0;
        auto* closure = (paddle::distributed::DownpourBrpcClosure*)done;
        for (size_t i = 0; i < 1; ++i) {
T
tangwei12 已提交
250 251
          if (closure->check_response(
                  i, paddle::distributed::PS_PUSH_DENSE_TABLE) != 0) {
T
tangwei12 已提交
252 253 254 255 256 257 258 259 260
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });

  LOG(INFO) << "Run pull_dense_grad";
  auto push_grad_status =
Z
zhaocaibei123 已提交
261
      worker_ptr_->PushDenseRawGradient(0, temp, tensor->numel(), closure);
T
tangwei12 已提交
262 263 264
  push_grad_status.wait();

  auto pull_update_status =
Z
zhaocaibei123 已提交
265
      worker_ptr_->PullDense(regions.data(), regions.size(), 0);
T
tangwei12 已提交
266 267 268 269 270 271 272
  pull_update_status.wait();

  for (size_t idx = 0; idx < tensor->numel(); ++idx) {
    EXPECT_FLOAT_EQ(w[idx], float(idx) - 1.0);
  }

  LOG(INFO) << "Run stop_server";
Z
zhaocaibei123 已提交
273
  worker_ptr_->StopServer();
T
tangwei12 已提交
274
  LOG(INFO) << "Run finalize_worker";
Z
zhaocaibei123 已提交
275
  worker_ptr_->FinalizeWorker();
T
tangwei12 已提交
276 277 278 279
  server_thread.join();
}

TEST(RunBrpcPushDense, Run) { RunBrpcPushDense(); }