test_trainable.py 2.9 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from collections import Counter
import unittest
19
import paddle
C
chengduo 已提交
20 21 22 23 24 25 26 27 28 29 30
import paddle.fluid as fluid
from simple_nets import init_data


def test_trainable():
    x = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    feature = fluid.layers.fc(input=x,
                              size=10,
                              param_attr=fluid.ParamAttr(trainable=False))
    loss = fluid.layers.cross_entropy(input=feature, label=label)
31
    loss = paddle.mean(loss)
C
chengduo 已提交
32 33 34 35
    return loss


class TestTrainable(unittest.TestCase):
36

C
chengduo 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def check_trainable(self,
                        model,
                        feed_dict,
                        op_count,
                        optimizer=fluid.optimizer.Adam()):
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = model()
            optimizer.minimize(loss)

            # The number of adam should be one.
            ops = Counter([op.type for op in main.global_block().ops])
            for op in op_count:
                if op_count[op] == 0:
                    assert op not in ops
                else:
                    assert ops[op] == op_count[op]

            exe.run(fluid.default_startup_program())
            exe.run(feed=feed_dict)

    def test_trainable(self):
        batch_size = 2
        img, label = init_data(batch_size, img_shape=[784], label_range=9)
        feed_dict = {'image': img, 'label': label}
        # Note that, because the Weight of FC is not trainable and the x is stop_gradient,
        # so the 'mul_grad' should not be appended.
69 70 71 72 73 74 75
        self.check_trainable(test_trainable,
                             feed_dict,
                             op_count={
                                 'adam': 1,
                                 'scale': 0,
                                 'mul_grad': 0
                             })
C
chengduo 已提交
76 77 78
        self.check_trainable(
            test_trainable,
            feed_dict,
79 80 81 82 83
            op_count={
                'adamax': 1,
                'scale': 1,
                'mul_grad': 0
            },
C
chengduo 已提交
84 85 86 87 88
            optimizer=fluid.optimizer.Adamax(learning_rate=0.2))


if __name__ == '__main__':
    unittest.main()