test_fleet_base_2.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import tempfile
16 17
import unittest
import paddle
18

T
tangwei12 已提交
19 20
paddle.enable_static()

21 22 23 24 25
import os
import paddle.fluid as fluid


class TestFleetBase(unittest.TestCase):
26

27 28
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
29
        os.environ["PADDLE_PORT"] = "36000"
Z
zmxdream 已提交
30 31 32
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        #os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
        #    "127.0.0.1:36001,127.0.0.2:36001"
33 34 35 36 37

    def test_ps_minimize(self):
        import paddle
        import paddle.distributed.fleet as fleet

T
tangwei12 已提交
38 39
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ID"] = "1"
40

41 42 43 44 45 46
        input_x = paddle.fluid.layers.data(name="x",
                                           shape=[32],
                                           dtype='float32')
        input_slot = paddle.fluid.layers.data(name="slot",
                                              shape=[1],
                                              dtype='int64')
47 48
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

49 50 51
        emb = paddle.fluid.layers.embedding(input=input_slot,
                                            size=[10, 9],
                                            is_sparse=True)
52
        input_x = paddle.concat(x=[input_x, emb], axis=1)
53 54 55
        fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
        fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
        prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
56 57
        cost = paddle.fluid.layers.cross_entropy(input=prediction,
                                                 label=input_y)
58
        avg_cost = paddle.mean(x=cost)
59

60
        role = fleet.PaddleCloudRoleMaker(is_collective=False)
61
        fleet.init(role)
T
tangwei12 已提交
62

63 64
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
T
tangwei12 已提交
65 66
        strategy.a_sync_configs = {"launch_barrier": False}

67 68 69 70 71 72
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
T
tangwei12 已提交
73
        exe.run(paddle.static.default_startup_program())
74 75 76
        pe = fluid.ParallelExecutor(use_cuda=False, loss_name=avg_cost.name)
        compiled_prog = fluid.compiler.CompiledProgram(
            fluid.default_main_program())
T
tangwei12 已提交
77

78
        temp_dir = tempfile.TemporaryDirectory()
79
        fleet.init_worker()
80 81 82 83
        fleet.fleet.save(dirname=temp_dir.name,
                         feed=['x', 'y'],
                         fetch=[avg_cost])
        fleet.fleet.save(dirname=temp_dir.name,
84 85
                         feed=[input_x, input_y],
                         fetch=[avg_cost])
86
        fleet.fleet.save(dirname=temp_dir.name)
87

88 89 90
        fleet.load_model(path=temp_dir.name, mode=0)
        fleet.load_model(path=temp_dir.name, mode=1)
        temp_dir.cleanup()
91

92 93 94

if __name__ == "__main__":
    unittest.main()