test_conditional_block.py 3.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
Y
Yu Yang 已提交
18
import unittest
19
import paddle
20
import paddle.fluid as fluid
21 22 23 24
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
25
from paddle.fluid.layers.control_flow import ConditionalBlock
Y
Yu Yang 已提交
26 27


28
class ConditionalBlockTest(unittest.TestCase):
29

Y
Yu Yang 已提交
30
    def test_forward(self):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data = layers.data(name='X', shape=[1], dtype='float32')
            data.stop_gradient = False
            cond = ConditionalBlock(inputs=[data])
            out = layers.create_tensor(dtype='float32')
            with cond.block():
                hidden = layers.fc(input=data, size=10)
                layers.assign(hidden, out)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            exe.run(startup_program)

            x = np.random.random(size=(10, 1)).astype('float32')

            outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0]
            print(outs)
50
            loss = paddle.mean(out)
51 52 53 54 55 56 57 58 59
            append_backward(loss=loss)
            outs = exe.run(
                main_program,
                feed={'X': x},
                fetch_list=[main_program.block(0).var(data.name + "@GRAD")])[0]
            print(outs)


class TestConditionalBlockOpInferShape(unittest.TestCase):
60

61 62 63 64 65 66 67 68 69
    def test_infer_shape(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            global_block = main_program.global_block()
            sub_block = main_program._create_block()
            main_program._rollback()
            step_scope = global_block.create_var(
                type=core.VarDesc.VarType.STEP_SCOPES)
70 71 72
            cond_var = layers.fill_constant(shape=[1],
                                            dtype='bool',
                                            value=False)
73

74 75 76 77 78 79 80 81 82 83 84 85 86
            op = global_block.append_op(type='conditional_block',
                                        inputs={
                                            'Cond': [cond_var],
                                            'Input': [],
                                        },
                                        outputs={
                                            'Out': [],
                                            'Scope': [step_scope]
                                        },
                                        attrs={
                                            'sub_block': sub_block,
                                            'is_scalar_condition': True
                                        })
87
            op.desc.infer_shape(global_block.desc)
Y
Yu Yang 已提交
88 89 90 91


if __name__ == '__main__':
    unittest.main()