test_backward.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19 20 21
import paddle.static as static
import paddle

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import numpy as np


class BackwardNet(object):
    """
    Abstract Base Class.
    All Net inherited this Class should implement two functions:
        build_model: build net to test the logic of backward
        init_data: fake input data to test all programs.
    """

    def __init__(self):
        self.stop_gradient_grad_vars = set()
        self.no_grad_vars = set()
        self.params_names = set()
        self.op_path = []

    def build_model(self):
        """
        Build net to test the logic of backward.
        :return: loss
        """
        raise NotImplementedError

    def init_data(self):
        """
        Fake input data to test all programs.
        :return: dict, {'var_name': var_data}
        """
        raise NotImplementedError
52 53


54
class TestBackward(unittest.TestCase):
55 56 57 58 59 60
    """
    All related TestClass should inherit this class,
    and only implement test_backward function.
    """

    def _check_all(self, net):
61 62
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
63 64 65 66 67 68
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
69 70
            loss = net.build_model()
            self._check_backward(loss, main)
71 72 73

            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            exe.run(startup)
            exe.run(feed=net.init_data())

    def _check_backward(self, loss, main_program):
        global_block_idx = self.global_block_idx
        params_grads = self._check_params_grad(loss)
        # 1.1 get_stop_gradients
        no_grad_dict = self._check_stop_gradient(main_program)
        # 1.2 find_op_path
        op_path, block_no_grad_set = self._check_op_path(
            main_program.block(global_block_idx), [loss], [], no_grad_dict)
        # 1.3 _find_no_grad_vars
        no_grad_vars = self._check_find_no_grad_vars(
            main_program.block(global_block_idx), op_path, [loss],
            block_no_grad_set)
        # update no_grad_dict
        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[global_block_idx].update(
            list(map(fluid.backward._append_grad_suffix_, block_no_grad_set)))

    def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None):
        params_grads = fluid.backward.append_backward(loss, parameter_list,
                                                      no_grad_set)
        params_names = set(
            [param_var.name for (param_var, grad_var) in params_grads])
        self.assertSetEqual(params_names, self.net.params_names)

        return params_grads

    def _check_stop_gradient(self, program):
        no_grad_dict = fluid.backward._get_stop_gradients_(program)
        if no_grad_dict is not None and isinstance(no_grad_dict, dict):
            self.assertSetEqual(no_grad_dict[self.global_block_idx],
                                self.net.stop_gradient_grad_vars)

        return no_grad_dict

    def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None):
        if no_grad_dict is None or not isinstance(no_grad_dict, dict):
            block_no_grad_set = None
        else:
            block_no_grad_set = set(
116 117
                map(fluid.backward._strip_grad_suffix_,
                    no_grad_dict[self.global_block_idx]))
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        op_path = fluid.backward._find_op_path_(root_block, outputs, inputs,
                                                block_no_grad_set)
        op_types = [op.type for op in op_path]
        self.assertListEqual(op_types, self.net.op_path)

        return op_path, block_no_grad_set

    def _check_find_no_grad_vars(self, root_block, op_path, targets,
                                 block_no_grad_set):
        no_grad_vars = fluid.backward._find_no_grad_vars(
            root_block, op_path, targets, block_no_grad_set)
        self.assertSetEqual(no_grad_vars, self.net.no_grad_vars)

        return no_grad_vars

133
    def _check_error_param_list(self, net, parameter_list):
134 135
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
136 137 138 139 140 141 142 143 144 145 146 147
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, parameter_list=parameter_list)
            exe.run(startup)
            exe.run(feed=net.init_data())

148
    def _check_error_no_grad_set(self, net, no_grad_set):
149 150
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
151 152 153 154 155 156 157 158 159 160 161 162
        exe = fluid.Executor(place)

        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            loss = net.build_model()
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss, no_grad_set=no_grad_set)
            exe.run(startup)
            exe.run(feed=net.init_data())

163 164

class SimpleNet(BackwardNet):
165

166
    def __init__(self):
J
Jiangxinz 已提交
167
        super(SimpleNet, self).__init__()
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        self.stop_gradient_grad_vars = set([
            u'x_no_grad@GRAD', u'x2_no_grad@GRAD', u'x3_no_grad@GRAD',
            u'label_no_grad@GRAD'
        ])
        self.no_grad_vars = set()
        self.params_names = set([u'w2v', u'fc_predict.b_0', u'fc_w'])
        self.op_path = [
            u'lookup_table_v2',
            u'lookup_table_v2',  # embedding
            u'elementwise_add',  # merge
            u'mul',
            u'elementwise_add',
            u'softmax',  # fc
            u'elementwise_sub',
            u'square',
183
            u'reduce_mean'
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        ]  # loss
        self.shape = [16, 50]

    def init_data(self):
        assert len(self.shape) == 2
        x = np.random.randint(0, 90, self.shape).astype('int64')
        x2 = np.random.randint(0, 90, self.shape).astype('int64')
        x3 = np.random.randint(0, 90, self.shape).astype('int64')
        label = np.random.random([self.shape[0], 1]).astype('float32')
        return {
            'x_no_grad': x,
            'x2_no_grad': x2,
            'x3_no_grad': x3,
            'label_no_grad': label
        }

    def build_model(self):
        # stop_gradient = True in input
        x = fluid.data(name='x_no_grad', shape=self.shape, dtype='int64')
        x2 = fluid.data(name='x2_no_grad', shape=self.shape, dtype='int64')
        x3 = fluid.data(name='x3_no_grad', shape=self.shape, dtype='int64')
205 206 207
        label = fluid.data(name='label_no_grad',
                           shape=[self.shape[0], 1],
                           dtype='float32')
208 209
        # shared layer, the grad of 'w2v' will be summed and renamed.
        # To test  _addup_repetitive_outputs_
210 211 212 213 214 215 216 217 218
        x_emb = fluid.embedding(x,
                                size=[100, 64],
                                param_attr=fluid.ParamAttr(name='w2v'))
        x2_emb = fluid.embedding(x2,
                                 size=[100, 64],
                                 param_attr=fluid.ParamAttr(name='w2v'))
        x3_emb = fluid.embedding(x3,
                                 size=[100, 64],
                                 param_attr=fluid.ParamAttr(name='w2v'))
219 220
        # merge layers
        x_merge = fluid.layers.elementwise_add(x_emb, x2_emb, name='x_add_x2')
221 222 223
        x2_merge = fluid.layers.elementwise_add(x2_emb,
                                                x3_emb,
                                                name='x2_add_x3')
224 225 226 227 228 229 230 231 232 233 234 235 236 237
        # shared fc_w
        predict = fluid.layers.fc(input=x_merge,
                                  size=1,
                                  act='softmax',
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  name='fc_predict')
        # useless layer for calculating loss
        fc_no_use = fluid.layers.fc(input=x2_merge,
                                    size=1,
                                    act='sigmoid',
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    name='fc_no_use')
        # loss
        cost = fluid.layers.square_error_cost(input=predict, label=label)
238
        loss = paddle.mean(cost, name='mean_loss')
239 240 241 242 243

        return loss


class TestSimpleNet(TestBackward):
244

245
    def test_backward(self):
246 247 248 249 250 251 252 253
        """
        Instantiate each NetClass to test backward.
        """
        self.global_block_idx = 0
        self.net = SimpleNet()
        self._check_all(self.net)


254
class TestGradientsError(unittest.TestCase):
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def test_error(self):
        x = fluid.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
        x.stop_gradient = False
        conv = fluid.layers.conv2d(x, 4, 1, bias_attr=False)
        y = fluid.layers.relu(conv)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y.name, x)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients(y, x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], [x], target_gradients=x.name)

        with self.assertRaises(TypeError):
            x_grad = fluid.gradients([y], x, no_grad_set=conv)


275
class TestSimpleNetWithErrorParamList(TestBackward):
276

277 278 279 280 281 282
    def test_parameter_list_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of parameter_list argument must be list or tuple
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, "test")
283
        # The type of parameter_list's member must be Variable or str
284 285 286 287 288
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_param_list(self.net, [test, "test", 3])


289
class TestSimpleNetWithErrorNoGradSet(TestBackward):
290

291 292 293 294 295 296 297 298 299 300 301 302
    def test_no_grad_set_type_error(self):
        self.global_block_idx = 0
        self.net = SimpleNet()
        # The type of no_grad_set argument must be set or list or tuple
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, "test")
        # The type of no_grad_set's member must be Variable or str
        test = fluid.data(name='test', shape=[None, 90], dtype='float32')
        with self.assertRaises(TypeError):
            self._check_error_no_grad_set(self.net, [test, "test", 3])


303
class TestAppendBackwardWithError(unittest.TestCase):
304

305 306 307 308 309 310
    def build_net(self):
        x = fluid.data(name='x', shape=[None, 13], dtype='int64')
        y = fluid.data(name='y', shape=[None, 1], dtype='float32')
        x_emb = fluid.embedding(x, size=[100, 256])
        y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc')
        loss = fluid.layers.square_error_cost(input=y_predict, label=y)
311
        avg_loss = paddle.mean(loss)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        param_names = [
            param.name
            for param in fluid.default_main_program().block(0).all_parameters()
        ]

        return avg_loss, param_names

    def setUp(self):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            self.avg_loss, self.param_names = self.build_net()

    def test_loss_type_error(self):
        with self.assertRaises(TypeError):
            fluid.backward.append_backward(loss=self.avg_loss.name)

    def test_parameter_list_type_error(self):
        with self.assertRaises(TypeError):
            self.param_names[0] = np.random.random([10])
331 332
            fluid.backward.append_backward(loss=self.avg_loss,
                                           parameter_list=self.param_names)
333 334 335 336 337 338 339

    def test_callback_type_error(self):
        with self.assertRaises(TypeError):

            def callback(block, context):
                return

340 341
            fluid.backward.append_backward(loss=self.avg_loss,
                                           callbacks=callback)
342 343


344
class TestGradientsWithOptimizer(unittest.TestCase):
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    def _check_grad_op_name(self, forward_list, optimiezed_list):
        backward_list = [op + "_grad" for op in reversed(forward_list)]
        idx = optimiezed_list.index(backward_list[0], len(backward_list))

        self.assertListEqual(backward_list,
                             optimiezed_list[idx:idx + len(backward_list)])

    def test_gradient_with_optimizer(self):
        main = fluid.Program()
        startup = fluid.Program()

        with fluid.program_guard(main, startup):
            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)

            forward_list = [o.type for o in main.current_block().ops]
            optimize_ops, pram_grads = paddle.autograd.backward_mode.gradients_with_optimizer(
                main, opt)

            optimized_list = [o.type for o in main.current_block().ops]

            self.assertGreater(len(optimized_list), len(forward_list))
            self.assertIn(opt.type, optimized_list)
            self._check_grad_op_name(forward_list, optimized_list)


374 375
# TODO(Aurelius84): add conditional network test
class ConditionalNet(BackwardNet):
376

377
    def __init__(self):
J
Jiangxinz 已提交
378
        super(ConditionalNet, self).__init__()
379 380 381


if __name__ == '__main__':
382
    paddle.enable_static()
383
    unittest.main()