simple_nets.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17 18 19
import paddle.fluid as fluid
import numpy as np


Z
Zeng Jinle 已提交
20
def simple_fc_net_with_inputs(img, label, class_num=10):
21
    hidden = img
22
    for _ in range(2):
23 24
        hidden = fluid.layers.fc(
            hidden,
25
            size=100,
26
            act='relu',
27 28
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=1.0)))
Z
Zeng Jinle 已提交
29
    prediction = fluid.layers.fc(hidden, size=class_num, act='softmax')
30
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
31
    loss = paddle.mean(loss)
32 33 34
    return loss


Z
Zeng Jinle 已提交
35 36 37 38 39 40
def simple_fc_net(use_feed=None):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    return simple_fc_net_with_inputs(img, label, class_num=10)


41
def batchnorm_fc_with_inputs(img, label, class_num=10):
42 43 44 45 46 47
    hidden = img
    for _ in range(2):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='relu',
48 49
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=1.0)))
50 51 52

        hidden = fluid.layers.batch_norm(input=hidden)

53
    prediction = fluid.layers.fc(hidden, size=class_num, act='softmax')
54
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
55
    loss = paddle.mean(loss)
56 57 58
    return loss


59 60 61 62 63 64
def fc_with_batchnorm(use_feed=None):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    return batchnorm_fc_with_inputs(img, label, class_num=10)


65 66 67 68 69 70 71 72 73 74 75 76
def bow_net(use_feed,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
77 78 79 80
    data = fluid.layers.data(name="words",
                             shape=[1],
                             dtype="int64",
                             lod_level=1)
81
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
82 83 84
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
85 86 87 88 89 90
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
91
    avg_cost = paddle.mean(x=cost)
92 93 94 95

    return avg_cost


96 97 98 99 100 101 102 103 104
def init_data(batch_size=32, img_shape=[784], label_range=9):
    np.random.seed(5)
    assert isinstance(img_shape, list)
    input_shape = [batch_size] + img_shape
    img = np.random.random(size=input_shape).astype(np.float32)
    label = np.array(
        [np.random.randint(0, label_range) for _ in range(batch_size)]).reshape(
            (-1, 1)).astype("int64")
    return img, label