softmax_gpudnn.h 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20 21 22 23
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"

// See Note [ Why still include the fluid headers? ]
24 25
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
26

27
namespace phi {
28

29 30
using ScopedTensorDescriptor = paddle::platform::ScopedTensorDescriptor;
using GPUDNNDataLayout = paddle::platform::DataLayout;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

// Vectorization trait 4 * sizeof(T)
template <typename T>
class VecT4 {};
template <>
class VecT4<double> {
 public:
  using Type = long4;
};
template <>
class VecT4<float> {
 public:
  using Type = int4;
};
template <>
46
class VecT4<phi::dtype::float16> {
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 public:
  using Type = int2;
};

// Vectorization trait 2 * sizeof(T)
template <typename T>
class VecT2 {};
template <>
class VecT2<double> {
 public:
  using Type = int4;
};
template <>
class VecT2<float> {
 public:
  using Type = int2;
};
template <>
65
class VecT2<phi::dtype::float16> {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 public:
  using Type = int;
};

static inline int log2_ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
82 83
      T sum_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
84 85 86 87 88 89 90 91 92 93 94
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
95 96
      T max_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
97 98 99 100 101
      sum[i] = max(sum[i], max_val);
    }
  }
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <typename Tx, typename Ty = Tx>
struct ReduceMaxFunctor {
  inline Ty initial() { return -std::numeric_limits<Ty>::infinity(); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return max(a, b);
  }
};

template <typename Tx, typename Ty = Tx>
struct ExpSubFunctor {
  HOSTDEVICE inline ExpSubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline ExpSubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - y));
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct ExpMulFunctor {
  HOSTDEVICE inline ExpMulFunctor() { y = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x) * y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnarySubFunctor {
  HOSTDEVICE inline UnarySubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnaryLogFunctor {
  HOSTDEVICE inline UnaryLogFunctor() {}

  HOSTDEVICE explicit inline UnaryLogFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::log(x));
  }
};

template <typename Tx, typename Ty>
struct DataTransFunctor {
  HOSTDEVICE inline DataTransFunctor() {}

  HOSTDEVICE explicit inline DataTransFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return x == -std::numeric_limits<Tx>::infinity()
               ? -std::numeric_limits<Ty>::infinity()
               : static_cast<Ty>(x);
  }
};

template <typename Tx, typename Ty = Tx>
struct UnaryDivFunctor {
  HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x * n_inv);
  }

 private:
  Tx n_inv;
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
template <typename Tx, typename Ty = Tx>
struct SoftmaxForwardFunctor {
  HOSTDEVICE inline SoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - max) / sum);
  }

 private:
  Tx max;
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct SoftmaxBackwardFunctor {
  HOSTDEVICE inline SoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(out * (grad_out - sum));
  }

 private:
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxForwardFunctor {
  HOSTDEVICE inline LogSoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), log_sum(std::log(sum)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - max - log_sum);
  }

 private:
  Tx max;
  Tx log_sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxBackwardFunctor {
  HOSTDEVICE inline LogSoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(grad_out - std::exp(out) * sum);
  }

 private:
  Tx sum;
};

243 244 245 246 247 248 249 250 251 252
/*
Core function of computing softmax forward for axis=-1.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: (a_{i,j} - maxvalue_{i}) / s_{i}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
253 254 255 256
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
257
          bool LogMode = false>
258 259 260 261
__global__ void WarpSoftmaxForward(T* softmax,
                                   const T* src,
                                   const int batch_size,
                                   const int stride,
262 263 264 265
                                   const int element_count) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
266 267
  constexpr int kLoops = kDimCeil / kWarpSize;
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
268 269
  constexpr int kBatchSize = (kDimCeil <= 32) ? 2 : 1;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
270 271 272 273
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  constexpr AccT kLowInf = -std::numeric_limits<AccT>::infinity();
  using kMode = kps::details::ReduceMode;
274 275 276 277 278 279 280 281 282

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

F
Feng Xing 已提交
283
  // data src
284 285
  AccT srcdata[kBatchSize][kLoopsV][kVSize];
  T src_tmp[kBatchSize][kLoopsV][kVSize];
F
Feng Xing 已提交
286
  kps::Init<AccT, kStep>(&srcdata[0][0][0], kLowInf);
287
  kps::Init<T, kStep>(&src_tmp[0][0][0], -std::numeric_limits<T>::infinity());
F
Feng Xing 已提交
288 289 290 291 292 293 294 295 296 297 298 299

  // data dst
  T out_tmp[kBatchSize][kLoopsV][kVSize];

  // max value
  AccT max[kBatchSize];
  kps::Init<AccT, kBatchSize>(&max[0], kLowInf);

  // sum value
  AccT sum[kBatchSize] = {0};

// read data from global memory
300 301
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
302 303
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
304 305 306 307 308
    VecT* reg_v = reinterpret_cast<VecT*>(&src_tmp[i][0][0]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &reg_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1);
    kps::ElementwiseUnary<T, AccT, kVItem, 1, 1, DataTransFunctor<T, AccT>>(
        &srcdata[i][0][0], &src_tmp[i][0][0], DataTransFunctor<T, AccT>());
309 310
  }

311
  // compute max
312 313 314 315 316 317 318
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              ReduceMaxFunctor<AccT>,
              kMode::kLocalMode>(
      &max[0], &srcdata[0][0][0], ReduceMaxFunctor<AccT>(), true);
319
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max);
320

321 322
// compute sum
#pragma unroll
323
  for (int i = 0; i < kBatchSize; ++i) {
324 325
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, ExpSubFunctor<AccT>>(
        &srcdata[i][0][0], &srcdata[i][0][0], ExpSubFunctor<AccT>(max[i]));
326
  }
327 328 329 330 331 332 333
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              kps::AddFunctor<AccT>,
              kMode::kLocalMode>(
      &sum[0], &srcdata[0][0][0], kps::AddFunctor<AccT>(), true);
334 335
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

F
Feng Xing 已提交
336
// write data to global memory
337 338
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
339 340 341
    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
342 343 344 345
    kps::ElementwiseUnary<AccT, T, kVItem, 1, 1, UnaryDivFunctor<AccT>>(
        &out_tmp[i][0][0], &srcdata[i][0][0], UnaryDivFunctor<AccT>(sum[i]));
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &softmax_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
346 347 348 349 350 351 352 353 354 355 356 357
  }
}

/*
Core function of computing softmax backward for axis=-1.
The computation includes
  - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j}
  - Compute src_{i,j} * ( grad_{i,j}) - s_{i} )
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
358 359 360 361
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
362
          bool LogMode = false>
363 364 365 366 367
__global__ void WarpSoftmaxBackward(T* dst,
                                    const T* grad,
                                    const T* src,
                                    int batch_size,
                                    int stride,
368 369 370 371
                                    int element_count) {
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
372
  constexpr int kLoops = kDimCeil / kWarpSize;
373
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;
374
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
375 376
  int element_count_v = element_count / kVSize;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
377 378 379 380 381 382 383 384
  int local_batches = min(batch_size - first_batch, kBatchSize);

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
385 386 387
  }

  // read data from global memory
388 389 390 391 392 393 394 395
  VecT src_reg[kBatchSize][kLoopsV];
  VecT grad_reg[kBatchSize][kLoopsV];
  VecT k_value;
  for (int s = 0; s < kVSize; s++) {
    reinterpret_cast<T*>(&k_value)[s] = 0.0;
  }
  kps::Init<VecT, kBatchSize * kLoopsV>(&src_reg[0][0], k_value);
  kps::Init<VecT, kBatchSize * kLoopsV>(&grad_reg[0][0], k_value);
396
#pragma unroll
397 398 399 400 401 402 403 404 405
  for (int i = 0; i < kBatchSize; ++i) {
    int flag = i < local_batches ? 1 : 0;
    int ptr = (first_batch + i) * stride;
    const VecT* src_v = reinterpret_cast<const VecT*>(&src[ptr]);
    const VecT* grad_v = reinterpret_cast<const VecT*>(&grad[ptr]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag);
406 407
  }

408 409 410 411 412 413 414 415 416 417 418 419
  // change T to AccT
  AccT src_tmp[kBatchSize][kLoopsV][kVSize];
  AccT grad_tmp[kBatchSize][kLoopsV][kVSize];
  const T* src_ptr = reinterpret_cast<const T*>(&src_reg[0][0]);
  const T* grad_ptr = reinterpret_cast<const T*>(&grad_reg[0][0]);
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor<T, AccT>());
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor<T, AccT>());

420 421
  // compute sum
  AccT sum[kBatchSize]{0.0};
422 423 424 425 426
  AccT sum_tmp[kBatchSize][kLoopsV][kVSize];
  AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[0][0][0]);
  AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[0][0][0]);
  kps::ElementwiseBinary<AccT, AccT, kStep, 1, 1, kps::MulFunctor<AccT>>(
      &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor<AccT>());
427 428 429 430 431
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              1,
              kps::AddFunctor<AccT>,
432 433
              kps::details::ReduceMode::kLocalMode>(
      &sum[0], &sum_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
434 435
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

436 437 438
  // write result to global memory
  AccT out[kBatchSize][kLoopsV][kVSize];
  T out_tmp[kBatchSize][kLoopsV][kVSize];
439 440 441
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;
442 443 444 445 446 447
    AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[i][0][0]);
    AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[i][0][0]);
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, UnarySubFunctor<AccT>>(
        &out[i][0][0], &gradptr[0], UnarySubFunctor<AccT>(sum[i]));
    kps::ElementwiseBinary<AccT, T, kVItem, 1, 1, kps::MulFunctor<AccT>>(
        &out_tmp[i][0][0], &srcptr[0], &out[i][0][0], kps::MulFunctor<AccT>());
448
    VecT* dst_v = reinterpret_cast<VecT*>(&dst[(first_batch + i) * stride]);
449 450 451
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &dst_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
452 453 454 455 456
  }
}

#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                       \
457 458 459 460
    WarpSoftmaxForward<T,                                                  \
                       VecT,                                               \
                       AccT,                                               \
                       Log2Elements,                                       \
461 462 463 464 465 466 467 468
                       LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, src, batch_size, stride, element_count);                      \
    break;

/*
  Wrapper of softmax formward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
469 470 471 472 473 474 475 476
void SwitchWarpSoftmaxForward(const int blocks,
                              const dim3 threads,
                              const GPUContext& dev_ctx,
                              T* dst,
                              const T* src,
                              const int batch_size,
                              const int stride,
                              const int element_count,
477
                              int Log2Elements) {
478
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, AccT);
    default:
      break;
  }
}

#define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                        \
497 498 499 500
    WarpSoftmaxBackward<T,                                                  \
                        VecT,                                               \
                        AccT,                                               \
                        Log2Elements,                                       \
501 502 503 504 505 506 507 508
                        LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, grad, src, batch_size, stride, element_count);                 \
    break;

/*
Wrapper of softmax backward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
509 510 511 512 513 514 515 516 517 518 519
void SwitchWarpSoftmaxBackward(const int blocks,
                               const dim3 threads,
                               const GPUContext& dev_ctx,
                               T* dst,
                               const T* grad,
                               const T* src,
                               const int batch_size,
                               const int stride,
                               const int element_count,
                               int Log2Elements) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  switch (Log2Elements) {
    SOFTMAX_WARP_BACKWARD_CASE(0, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(1, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(2, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(3, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(4, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(5, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(6, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(7, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(8, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(9, AccT);
    default:
      break;
  }
}

#undef SOFTMAX_WARP_FORWARD_CASE
#undef SOFTMAX_WARP_BACKWARD_CASE

539 540 541 542 543
/**
 * <NormalSoftmaxKernel>
 * Better performence when axis != -1
 */

544 545 546 547
static void GetGridDim(
    int high_dim, int mid_dim, int low_dim, const dim3& block, dim3* grid) {
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  int max_mp = phi::backends::gpu::GetGPUMultiProcessors(device_id);
548
  int max_threads_per_mp =
549
      phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(device_id);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  int max_threads = max_threads_per_mp * max_mp;
  int num_threads = block.x * block.y;
  int max_num_blocks = max_threads / num_threads;

  int grid_x = (low_dim + block.x - 1) / block.x;
  grid_x = std::min(grid_x, max_num_blocks);
  int grid_y = (max_num_blocks + grid_x - 1) / grid_x;
  grid_y = std::min(grid_y, high_dim);
  grid->x = grid_x;
  grid->y = grid_y;
}

static void GetBlockDim(int mid_dim, int low_dim, dim3* block) {
#ifdef __HIPCC__
  constexpr int max_num_threads = 256;
#else
  constexpr int max_num_threads = 1024;
#endif
  int block_x = 1 << log2_ceil(low_dim);
  int block_y = 1 << log2_ceil(mid_dim);
  block->x = std::min(block_x, 32);
  block->y = std::min(block_y, static_cast<int>(max_num_threads / block->x));
  block->x = std::min(block_x, static_cast<int>(max_num_threads / block->y));
}

575 576
static void GetLaunchConfig(
    int high_dim, int mid_dim, int low_dim, dim3* grid, dim3* block) {
577 578 579 580
  GetBlockDim(mid_dim, low_dim, block);
  GetGridDim(high_dim, mid_dim, low_dim, *block, grid);
}

581 582
template <typename T,
          typename AccT,
583
          template <typename, typename> class Functor>
584 585
__global__ void NormalSoftmaxForward(
    T* output, const T* input, int high_dim, int mid_dim, int low_dim) {
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int input_offset = high_id * high_stride + low_id;

      // 1. reduce max
      AccT max_value = -std::numeric_limits<AccT>::infinity();
      AccT value = -std::numeric_limits<AccT>::infinity();
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        max_value = kps::MaxFunctor<AccT>()(max_value, value);
      }

      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::MaxFunctor<AccT>, kMode::kGlobalMode>(
            &max_value, &max_value, kps::MaxFunctor<AccT>(), false);
      }

      // 2. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        sum += std::exp(value - max_value);
      }
      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 3. (log)softmax
      Functor<AccT, T> functor(max_value, sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = input_offset + mid_id * mid_stride;
        output[data_offset] = functor(static_cast<AccT>(input[data_offset]));
      }
    }
  }
}

628 629
template <typename T,
          typename AccT,
630
          template <typename, typename> class Functor>
631 632 633 634 635 636
__global__ void NormalSoftmaxBackward(T* input_grad,
                                      const T* output_grad,
                                      const T* output,
                                      int high_dim,
                                      int mid_dim,
                                      int low_dim) {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int grad_offset = high_id * high_stride + low_id;

      // 1. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        sum += static_cast<AccT>(output_grad[data_offset]) *
               static_cast<AccT>(output[data_offset]);
      }
      if (blockDim.y > 1) {
        kps::Reduce<AccT, 1, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 2. (log)softmax backward
      Functor<AccT, T> functor(sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        input_grad[data_offset] =
            functor(static_cast<AccT>(output_grad[data_offset]),
                    static_cast<AccT>(output[data_offset]));
      }
    }
  }
}

669
template <typename T, bool LogMode = false>
670 671 672 673 674 675 676
void LaunchNormalSoftmaxForward(const GPUContext& dev_ctx,
                                T* output_data,
                                const T* input_data,
                                int high_dim,
                                int mid_dim,
                                int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
677 678 679 680
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
    NormalSoftmaxForward<
681 682
        T,
        AccT,
683 684 685 686
        LogSoftmaxForwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
        output_data, input_data, high_dim, mid_dim, low_dim);
  } else {
    NormalSoftmaxForward<
687 688 689
        T,
        AccT,
        SoftmaxForwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
690 691 692 693
        output_data, input_data, high_dim, mid_dim, low_dim);
  }
}

694
template <typename T, bool LogMode = false>
695 696 697 698 699 700 701 702
void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx,
                                 T* input_grad_data,
                                 const T* output_grad_data,
                                 const T* output_data,
                                 int high_dim,
                                 int mid_dim,
                                 int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
703 704 705 706
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
    NormalSoftmaxBackward<
707 708
        T,
        AccT,
709
        LogSoftmaxBackwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
710 711 712 713 714
        input_grad_data,
        output_grad_data,
        output_data,
        high_dim,
        mid_dim,
715 716 717
        low_dim);
  } else {
    NormalSoftmaxBackward<
718 719 720 721 722 723 724 725
        T,
        AccT,
        SoftmaxBackwardFunctor><<<grid, block, 0, dev_ctx.stream()>>>(
        input_grad_data,
        output_grad_data,
        output_data,
        high_dim,
        mid_dim,
726 727 728 729
        low_dim);
  }
}

730
template <typename T, bool LogMode = false>
731 732 733 734
void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                    const DenseTensor& x,
                                    const int input_axis,
                                    DenseTensor* out) {
735 736 737 738
  auto* out_data = out->data<T>();

  auto dims = x.dims();
  const int rank = dims.size();
739
  const int axis = phi::funcs::CanonicalAxis(input_axis, rank);
740
  const int dim = dims[axis];
741 742
  const int N = phi::funcs::SizeToAxis(axis, dims);
  const int D = phi::funcs::SizeOutAxis(axis, dims);
743

Y
Yanxing Shi 已提交
744
  constexpr int max_dim = 512;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = static_cast<int>(log2_ceil(dim));
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 32) ? 2 : 1;

    // use 128 threads per block to maximimize gpu utilization
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
764

765
    if (dim % 4 == 0) {
766 767 768 769 770 771 772 773 774
      SwitchWarpSoftmaxForward<T, T4, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               out_data,
                                               x.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
775
    } else if (dim % 2 == 0) {
776 777 778 779 780 781 782 783 784
      SwitchWarpSoftmaxForward<T, T2, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               out_data,
                                               x.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
785
    } else {
786 787 788 789 790 791 792 793 794
      SwitchWarpSoftmaxForward<T, T, LogMode>(blocks,
                                              threads,
                                              dev_ctx,
                                              out_data,
                                              x.data<T>(),
                                              N,
                                              dim,
                                              dim,
                                              kDimLog2);
795
    }
796
  } else if (D > 1) {
797 798
    LaunchNormalSoftmaxForward<T, LogMode>(
        dev_ctx, out_data, x.data<T>(), N, dim, D);
799 800 801
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
802
    GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;
803 804 805 806 807 808 809 810 811 812 813 814
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
815 816 817 818 819 820 821 822 823 824 825
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxForward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              x.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              out_data,
              MIOPEN_SOFTMAX_LOG,
              mode));
826
    } else {
827 828 829 830 831 832 833 834 835 836 837
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxForward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              x.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              out_data,
              MIOPEN_SOFTMAX_ACCURATE,
              mode));
838 839 840 841 842
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
843 844 845 846 847 848 849 850 851
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
          handle,
          CUDNN_SOFTMAX_LOG,
          mode,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc_,
          x.data<T>(),
          paddle::platform::CudnnDataType<T>::kZero(),
          desc_,
852 853
          out_data));
    } else {
854 855 856 857 858 859 860 861 862 863
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
          handle,
          CUDNN_SOFTMAX_ACCURATE,
          mode,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc_,
          x.data<T>(),
          paddle::platform::CudnnDataType<T>::kZero(),
          desc_,
          out_data));
864 865 866 867 868 869
    }
#endif
  }
}

template <typename T, bool LogMode = false>
870 871 872 873 874
void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                     const DenseTensor& out,
                                     const DenseTensor& dout,
                                     const int input_axis,
                                     DenseTensor* dx) {
875 876 877 878
  auto* dx_data = dx->data<T>();

  auto dims = out.dims();
  const int rank = dims.size();
879
  const int axis = phi::funcs::CanonicalAxis(input_axis, rank);
880
  const int dim = dims[axis];
881 882
  const int N = phi::funcs::SizeToAxis(axis, dims);
  const int D = phi::funcs::SizeOutAxis(axis, dims);
883

Y
Yanxing Shi 已提交
884
  constexpr int max_dim = 512;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = log2_ceil(dim);
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
    if (dim % 4 == 0) {
903 904 905 906 907 908 909 910 911 912
      SwitchWarpSoftmaxBackward<T, T4, LogMode>(blocks,
                                                threads,
                                                dev_ctx,
                                                dx_data,
                                                dout.data<T>(),
                                                out.data<T>(),
                                                N,
                                                dim,
                                                dim,
                                                kDimLog2);
913
    } else if (dim % 2 == 0) {
914 915 916 917 918 919 920 921 922 923
      SwitchWarpSoftmaxBackward<T, T2, LogMode>(blocks,
                                                threads,
                                                dev_ctx,
                                                dx_data,
                                                dout.data<T>(),
                                                out.data<T>(),
                                                N,
                                                dim,
                                                dim,
                                                kDimLog2);
924
    } else {
925 926 927 928 929 930 931 932 933 934
      SwitchWarpSoftmaxBackward<T, T, LogMode>(blocks,
                                               threads,
                                               dev_ctx,
                                               dx_data,
                                               dout.data<T>(),
                                               out.data<T>(),
                                               N,
                                               dim,
                                               dim,
                                               kDimLog2);
935
    }
936
  } else if (D > 1) {
937 938
    LaunchNormalSoftmaxBackward<T, LogMode>(
        dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N, dim, D);
939 940 941
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
942
    GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;
943 944 945 946 947 948 949 950 951 952 953 954
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
955 956 957 958 959 960 961 962 963 964 965 966 967
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxBackward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data,
              MIOPEN_SOFTMAX_LOG,
              mode));
968
    } else {
969 970 971 972 973 974 975 976 977 978 979 980 981
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::miopenSoftmaxBackward_V2(
              handle,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data,
              MIOPEN_SOFTMAX_ACCURATE,
              mode));
982 983 984 985 986
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
987 988 989 990 991 992 993 994 995 996 997 998 999
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cudnnSoftmaxBackward(
              handle,
              CUDNN_SOFTMAX_LOG,
              mode,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data));
1000
    } else {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cudnnSoftmaxBackward(
              handle,
              CUDNN_SOFTMAX_ACCURATE,
              mode,
              paddle::platform::CudnnDataType<T>::kOne(),
              desc_,
              out.data<T>(),
              desc_,
              dout.data<T>(),
              paddle::platform::CudnnDataType<T>::kZero(),
              desc_,
              dx_data));
1014 1015 1016 1017 1018
    }
#endif
  }
}

1019
}  // namespace phi