concat_mkldnn_op.cc 8.5 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
16

M
Michal Gallus 已提交
17
#include "paddle/fluid/operators/concat_op.h"
18
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
21 22 23 24

namespace paddle {
namespace operators {

25
using dnnl::concat;
26 27 28
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::LoDTensor;
using framework::Tensor;
M
Michal Gallus 已提交
32 33
using platform::to_void_cast;

34 35 36 37 38
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
39
                      const dnnl::engine mkldnn_engine,
40 41
                      const std::vector<const Tensor*>& inputs,
                      Tensor* output)
42 43 44 45 46
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
47 48
        concat_axis >= -rank && concat_axis < rank,
        true,
49 50
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
51 52 53
            -rank,
            rank,
            concat_axis));
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

69 70
    memory::data_type dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(inputs[0]->dtype()));
71 72 73 74 75
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
76
      srcs_md.push_back(inputs[i]->mem_desc());
77 78
    }

79
    auto dst_dims = phi::vectorize<int64_t>(output->dims());
J
jakpiase 已提交
80 81
    dnnl::memory::desc dst_md =
        memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
82 83 84 85 86 87 88

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
89 90
      const memory::desc& dst_md,
      const int concat_axis,
91 92 93 94 95
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

96
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) {
97 98 99 100 101 102
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
103 104
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
105
    PADDLE_ENFORCE_EQ(
106 107
        input->layout(),
        DataLayout::kMKLDNN,
108
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
M
Michal Gallus 已提交
109 110 111
  }
}

112 113 114 115
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
116 117 118 119
  auto end_it = std::copy_if(
      inputs.begin(), inputs.end(), reduced.begin(), [](const Tensor* t) {
        return t->numel() > 0;
      });
120 121 122 123
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
124 125 126 127
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
128 129 130
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
131 132
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
133
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
134 135
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
136

137
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
138

139 140
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
141

142 143
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
144

145
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
146 147
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
148
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
149
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
150
    }
151
    args.insert({DNNL_ARG_DST, *dst_mem});
A
Adam 已提交
152 153 154

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
155

156
    output->set_mem_desc(dst_mem->get_desc());
M
Michal Gallus 已提交
157 158
  }
};
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

188
    auto dout_vec_dims = phi::vectorize(dout->dims());
189 190 191 192 193

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

194 195 196
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
197 198 199
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
200
        onednn_engine);
201
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
202
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
203 204 205 206

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
207
        auto dx_vec_dims = phi::vectorize(dx[i]->dims());
208 209 210 211
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
212 213 214 215
            dx[i],
            dx_vec_dims,
            platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
            ctx.GetPlace());
216 217 218 219 220 221 222
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

223
        dx[i]->set_mem_desc(reorder_dst_memory_p->get_desc());
224 225 226 227 228 229
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
230 231 232 233 234
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

235 236 237
REGISTER_OP_KERNEL(concat,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
238
                   ops::ConcatMKLDNNOpKernel<float>,
239
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
240 241
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
242

243 244 245
REGISTER_OP_KERNEL(concat_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
246 247
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);