paddle_mkldnn_quantizer_config.h 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <cassert>
#include <map>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>

#include "paddle_api.h"  // NOLINT

namespace paddle {

// Algorithms for finding scale of quantized Tensors.
enum class ScaleAlgo {
M
Michał Gallus 已提交
29 30 31 32 33 34
  NONE,      // Do not compute scale
  MAX,       // Find scale based on the max absolute value
  MAX_CH,    // Find scale based on the max absolute value per output channel
  MAX_CH_T,  // Find scale based on the max absolute value per output channel
             // of a transposed tensor
  KL,        // Find scale based on KL Divergence
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
};

struct MkldnnQuantizerConfig {
  MkldnnQuantizerConfig();

  /** Specify a quantization algorithm for a connection (input/output) of the
   * operator type.
   * @param op_type_name the operator's name.
   * @param conn_name name of the connection (input/output) of the operator.
   * @param algo the algorithm for computing scale.
   */
  void SetScaleAlgo(std::string op_type_name, std::string conn_name,
                    ScaleAlgo algo) {
    rules_[op_type_name][conn_name] = algo;
  }

  /** Get the quantization algorithm for a connection (input/output) of the
   * operator type.
   * @param op_type_name the operator's name.
   * @param conn_name name of the connection (input/output) of the operator.
   * @return the algorithm for computing scale.
   */
  ScaleAlgo scale_algo(const std::string& op_type_name,
                       const std::string& conn_name) const;

  /** Set the batch of data to be used for warm-up iteration.
   * @param data batch of data.
   */
  void SetWarmupData(std::shared_ptr<std::vector<PaddleTensor>> data) {
    warmup_data_ = data;
  }

  /** Get the batch of data used for warm-up iteration.
   * @return batch of data.
   */
  std::shared_ptr<std::vector<PaddleTensor>> warmup_data() const {
    return warmup_data_;
  }

  void SetWarmupBatchSize(int batch_size) { warmup_bs_ = batch_size; }

  int warmup_batch_size() const { return warmup_bs_; }

  void SetEnabledOpTypes(std::unordered_set<std::string> op_list) {
    enabled_op_types_ = op_list;
  }

  const std::unordered_set<std::string>& enabled_op_types() const {
    return enabled_op_types_;
  }

  void SetExcludedOpIds(std::unordered_set<int> op_ids_list) {
    excluded_op_ids_ = op_ids_list;
  }

  const std::unordered_set<int>& excluded_op_ids() const {
    return excluded_op_ids_;
  }

  void SetDefaultScaleAlgo(ScaleAlgo algo) { default_scale_algo_ = algo; }

  ScaleAlgo default_scale_algo() const { return default_scale_algo_; }

 protected:
  std::map<std::string, std::map<std::string, ScaleAlgo>> rules_;
  std::unordered_set<std::string> enabled_op_types_;
  std::unordered_set<int> excluded_op_ids_;
  std::shared_ptr<std::vector<PaddleTensor>> warmup_data_;
  int warmup_bs_{1};
  ScaleAlgo default_scale_algo_{ScaleAlgo::MAX};
};

}  // namespace paddle