test_imperative_gan.py 6.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six
import sys

import paddle
import paddle.fluid as fluid
M
minqiyang 已提交
23
import paddle.fluid.core as core
X
Xin Pan 已提交
24 25 26
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope
X
Xin Pan 已提交
27
from paddle.fluid.imperative.base import to_variable
X
Xin Pan 已提交
28 29 30 31 32 33 34 35


class Discriminator(fluid.imperative.Layer):
    def __init__(self):
        super(Discriminator, self).__init__()
        self._fc1 = FC(size=32, act='elu', name="d_fc1")
        self._fc2 = FC(size=1, name="d_fc2")

X
Xin Pan 已提交
36 37 38
    def parameters(self):
        return self._fc1.parameters() + self._fc2.parameters()

X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49 50
    def forward(self, inputs):
        x = self._fc1(inputs)
        return self._fc2(x)


class Generator(fluid.imperative.Layer):
    def __init__(self):
        super(Generator, self).__init__()
        self._fc1 = FC(size=64, act='elu', name="g_fc1")
        self._fc2 = FC(size=64, act='elu', name="g_fc2")
        self._fc3 = FC(size=1, name="g_fc3")

X
Xin Pan 已提交
51 52 53 54
    def parameters(self):
        return self._fc1.parameters() + self._fc2.parameters(
        ) + self._fc3.parameters()

X
Xin Pan 已提交
55 56 57 58 59 60 61
    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
        return self._fc3(x)


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
62
    def test_gan_float32(self):
X
Xin Pan 已提交
63 64 65 66 67
        seed = 90

        startup = fluid.Program()
        startup.random_seed = seed
        discriminate_p = fluid.Program()
X
Xin Pan 已提交
68 69 70 71
        generate_p = fluid.Program()
        discriminate_p.random_seed = seed
        generate_p.random_seed = seed

X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        scope = fluid.core.Scope()
        with new_program_scope(
                main=discriminate_p, startup=startup, scope=scope):
            discriminator = Discriminator()
            generator = Generator()

            img = fluid.layers.data(
                name="img", shape=[2, 1], append_batch_size=False)
            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_real = discriminator(img)
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
86 87 88
                    x=d_real,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
89 90 91 92

            d_fake = discriminator(generator(noise))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
93 94 95
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=0.0)))
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

            d_loss = d_loss_real + d_loss_fake

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(d_loss)

        with new_program_scope(main=generate_p, startup=startup, scope=scope):
            discriminator = Discriminator()
            generator = Generator()

            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_fake = discriminator(generator(noise))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
112 113 114
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
115 116 117 118

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(g_loss)

M
minqiyang 已提交
119 120
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
X
Xin Pan 已提交
121
        static_params = dict()
X
Xin Pan 已提交
122 123 124 125
        with fluid.scope_guard(scope):
            img = np.ones([2, 1], np.float32)
            noise = np.ones([2, 2], np.float32)
            exe.run(startup)
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134
            static_d_loss = exe.run(discriminate_p,
                                    feed={'img': img,
                                          'noise': noise},
                                    fetch_list=[d_loss])[0]
            static_g_loss = exe.run(generate_p,
                                    feed={'noise': noise},
                                    fetch_list=[g_loss])[0]

            # generate_p contains all parameters needed.
X
Xin Pan 已提交
135
            for param in generate_p.global_block().all_parameters():
X
Xin Pan 已提交
136 137 138 139
                static_params[param.name] = np.array(
                    scope.find_var(param.name).get_tensor())

        dy_params = dict()
M
minqiyang 已提交
140
        with fluid.imperative.guard():
X
Xin Pan 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            discriminator = Discriminator()
            generator = Generator()
            sgd = SGDOptimizer(learning_rate=1e-3)

            d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_real, label=to_variable(np.ones([2, 1], np.float32))))

            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))

            d_loss = d_loss_real + d_loss_fake
            d_loss._backward()
            sgd.minimize(d_loss)
X
Xin Pan 已提交
162 163
            discriminator.clear_gradients()
            generator.clear_gradients()
X
Xin Pan 已提交
164

X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174 175
            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
            g_loss._backward()
            sgd.minimize(g_loss)
            for p in discriminator.parameters():
                dy_params[p.name] = p._numpy()
            for p in generator.parameters():
                dy_params[p.name] = p._numpy()
X
Xin Pan 已提交
176 177 178 179 180 181 182 183

            dy_g_loss = g_loss._numpy()
            dy_d_loss = d_loss._numpy()

        self.assertEqual(dy_g_loss, static_g_loss)
        self.assertEqual(dy_d_loss, static_d_loss)
        for k, v in six.iteritems(dy_params):
            self.assertTrue(np.allclose(v, static_params[k]))
X
Xin Pan 已提交
184 185 186 187


if __name__ == '__main__':
    unittest.main()