uniform_random_op.cc 9.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/uniform_random_op.h"
L
Leo Chen 已提交
15

16
#include <string>
L
Leo Chen 已提交
17

Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
19
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
22
#include "paddle/fluid/platform/bfloat16.h"
23
#include "paddle/phi/infermeta/nullary.h"
Y
yaoxuefeng 已提交
24

Y
Yu Yang 已提交
25 26
namespace paddle {
namespace operators {
Y
Yu Yang 已提交
27

28 29
namespace {
template <typename T>
30 31 32 33
inline void UniformRealDistribution(T *data,
                                    const int64_t &size,
                                    const float &min,
                                    const float &max,
34
                                    const unsigned int seed) {
35 36 37 38 39 40 41 42 43 44 45 46
  VLOG(4) << "[CPU] UniformRandomKernel<T>";
  std::uniform_real_distribution<T> dist(static_cast<T>(min),
                                         static_cast<T>(max));
  auto engine = paddle::framework::GetCPURandomEngine(seed);

  for (int64_t i = 0; i < size; ++i) {
    data[i] = dist(*engine);
  }
}

template <>
inline void UniformRealDistribution(paddle::platform::bfloat16 *data,
47 48 49 50
                                    const int64_t &size,
                                    const float &min,
                                    const float &max,
                                    const unsigned int seed) {
51 52 53 54 55 56 57 58 59 60
  VLOG(4) << "[CPU] UniformRandomKernel<bfloat16>";
  std::uniform_real_distribution<float> dist(min, max);
  auto engine = paddle::framework::GetCPURandomEngine(seed);

  for (int64_t i = 0; i < size; ++i) {
    data[i] = static_cast<paddle::platform::bfloat16>(dist(*engine));
  }
}
}  // namespace

Q
qijun 已提交
61 62 63 64
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
65
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
66
 public:
C
chengduo 已提交
67 68
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
Y
Yancey1989 已提交
69
    auto out_var = ctx.OutputVar("Out");
70 71 72 73 74 75
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
76
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
77
      } else if (list_new_shape_tensor.size() > 0) {
78
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
79 80 81
      }
    }

82 83
    if (out_var->IsType<phi::SelectedRows>()) {
      auto *selected_rows = out_var->GetMutable<phi::SelectedRows>();
84
      tensor = selected_rows->mutable_value();
85 86
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
87
      tensor->Resize(phi::make_ddim(shape));
88
      selected_rows->mutable_rows()->reserve(shape[0]);
89 90
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
91
      if (!new_shape.empty()) tensor->Resize(phi::make_ddim(new_shape));
Y
Yancey1989 已提交
92
    } else {
93 94 95 96 97
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected type of Output(out) in uniform_random_op must be Tensor, "
          "SelectedRows. But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
Y
Yancey1989 已提交
98
    }
C
chengduo 已提交
99
    T *data = tensor->mutable_data<T>(ctx.GetPlace());
Y
yaoxuefeng 已提交
100
    int64_t size = tensor->numel();
L
Leo Chen 已提交
101

102
    UniformRealDistribution<T>(
103 104 105 106
        data,
        size,
        ctx.Attr<float>("min"),
        ctx.Attr<float>("max"),
107
        static_cast<unsigned int>(ctx.Attr<int>("seed")));
Y
yaoxuefeng 已提交
108

109 110 111 112 113 114
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
115
      PADDLE_ENFORCE_GT(
116 117
          size,
          (diag_num - 1) * (diag_step + 1),
118 119 120 121
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
122 123 124 125
              diag_num,
              diag_step,
              (diag_num - 1) * (diag_step + 1),
              size));
126 127 128 129 130
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data[pos] = diag_val;
      }
    }
Q
qijun 已提交
131 132 133
  }
};

Y
Yu Yang 已提交
134
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
135 136 137
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

138
 protected:
139
  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
140
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
141
    return framework::OpKernelType(
142
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
143
        ctx.GetPlace());
Y
Yu Yang 已提交
144
  }
145 146

  framework::OpKernelType GetKernelTypeForVar(
147 148
      const std::string &var_name,
      const Tensor &tensor,
149 150 151 152
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
153 154
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
155
  }
Y
Yu Yang 已提交
156 157
};

Y
Yu Yang 已提交
158
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
159
 public:
Y
Yu Yang 已提交
160
  void Make() override {
161
    AddInput("ShapeTensor",
162 163
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "uniform_random "
164
             "according to "
165
             "this given shape. It means that it has a higher priority than "
166
             "the shape attribute, while the shape attribute still should be "
T
tianshuo78520a 已提交
167
             "set correctly to guarantee shape inference in compile time.")
168 169
        .AsDispensable();
    AddInput("ShapeTensorList",
170 171 172 173
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, uniform_random use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
174 175
        .AsDuplicable()
        .AsDispensable();
Y
yuyang18 已提交
176
    AddOutput("Out", "The output tensor of uniform random op");
177
    AddComment(R"DOC(
178
This operator initializes a tensor with random values sampled from a
179
uniform distribution. The random result is in set [min, max).
180

Y
Yu Yang 已提交
181
)DOC");
182 183
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
        .SetDefault({});
Y
yuyang18 已提交
184
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
185 186
        .SetDefault(-1.0f)
        .SupportTensor();
Y
yuyang18 已提交
187
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
188 189
        .SetDefault(1.0f)
        .SupportTensor();
Q
qijun 已提交
190
    AddAttr<int>("seed",
191
                 "Random seed used for generating samples. "
192 193
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
Y
yuyang18 已提交
194
                 "generate the same random numbers every time. [default 0].")
Q
qijun 已提交
195
        .SetDefault(0);
196 197 198 199 200 201 202 203
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
Y
yuyang18 已提交
204
    AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
205
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
206 207
  }
};
Y
Yancey1989 已提交
208 209 210

class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
211
  void operator()(framework::InferVarTypeContext *ctx) const override {
C
chengduo 已提交
212
    auto var_data_type = static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
213
        PADDLE_GET_CONST(int, ctx->GetAttr("dtype")));
C
chengduo 已提交
214

215 216
    if (ctx->GetOutputType("Out") != framework::proto::VarType::SELECTED_ROWS) {
      ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR);
Y
Yancey1989 已提交
217
    }
218
    ctx->SetOutputDataType("Out", var_data_type);
Y
Yancey1989 已提交
219 220 221
  }
};

Y
Yu Yang 已提交
222 223 224
}  // namespace operators
}  // namespace paddle

225 226
DECLARE_INFER_SHAPE_FUNCTOR(uniform_random,
                            UniformRandomInferShapeFunctor,
227 228
                            PD_INFER_META(phi::UniformRandomInferMeta));

H
hong 已提交
229
REGISTER_OPERATOR(
230 231
    uniform_random,
    paddle::operators::UniformRandomOp,
H
hong 已提交
232 233 234
    paddle::operators::UniformRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
235 236
    paddle::operators::UniformRandomOpVarTypeInference,
    UniformRandomInferShapeFunctor);
Y
Yancey1989 已提交
237

238 239 240 241 242
REGISTER_OP_CPU_KERNEL(
    uniform_random_batch_size_like,
    paddle::operators::CPUUniformRandomKernel<float>,
    paddle::operators::CPUUniformRandomKernel<double>,
    paddle::operators::CPUUniformRandomKernel<paddle::platform::bfloat16>);