math_function.h 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#ifdef PADDLE_WITH_MKLML
Q
qijun 已提交
17 18 19 20 21 22 23 24 25 26 27 28
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif

#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif

#ifndef LAPACK_FOUND
extern "C" {
Y
Yu Yang 已提交
29
#include <cblas.h>  // NOLINT
Q
qijun 已提交
30 31 32 33 34 35 36 37 38 39 40 41
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
                   int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
                   int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
                   const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
                   const int* ipiv);
}
#endif

#include <cmath>
Y
Yu Yang 已提交
42
#include <vector>
Q
qijun 已提交
43

Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/eigen.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
46 47 48 49
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
Q
qijun 已提交
50 51 52 53 54

namespace paddle {
namespace operators {
namespace math {

Q
qijun 已提交
55 56
// Support continuous memory now
// If transA = N, and transB = N
M
Markus Kliegl 已提交
57
// Then matrixA: M * K, matrixB: K * N, matrixC : M * N
Q
qijun 已提交
58 59
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

template <typename DeviceContext>
class Blas {
 public:
  explicit Blas(const DeviceContext& context) : context_(context) {}

  template <typename T>
  void GEMM(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
            const int M, const int N, const int K, const T alpha, const T* A,
            const T* B, const T beta, T* C) const;

  template <typename T>
  void GEMM(const bool transA, const bool transB, const int M, const int N,
            const int K, const T alpha, const T* A, const int lda, const T* B,
            const int ldb, const T beta, T* C, const int ldc) const;

 private:
  const DeviceContext& context_;
};

Q
QI JUN 已提交
80
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89
class BlasT : private Blas<DeviceContext> {
 public:
  using Blas<DeviceContext>::Blas;

  template <typename... ARGS>
  void GEMM(ARGS... args) const {
    static_cast<const Blas<DeviceContext>*>(this)->template GEMM<T>(args...);
  }
};
Q
qijun 已提交
90

Q
QI JUN 已提交
91
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101
inline BlasT<DeviceContext, T> GetBlas(
    const framework::ExecutionContext& exe_ctx) {
  return BlasT<DeviceContext, T>(
      exe_ctx.template device_context<DeviceContext>());
}

template <typename DeviceContext, typename T>
inline BlasT<DeviceContext, T> GetBlas(const DeviceContext& dev_ctx) {
  return BlasT<DeviceContext, T>(dev_ctx);
}
G
guosheng 已提交
102

Q
qijun 已提交
103
// matrix multiply with continuous memory
Q
QI JUN 已提交
104 105 106 107
template <typename DeviceContext, typename T>
void matmul(const DeviceContext& context, const framework::Tensor& matrix_a,
            bool trans_a, const framework::Tensor& matrix_b, bool trans_b,
            T alpha, framework::Tensor* matrix_out, T beta);
Q
qijun 已提交
108

M
Markus Kliegl 已提交
109
// Batched gemm
Q
QI JUN 已提交
110 111 112 113
template <typename DeviceContext, typename T>
void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB, const int M, const int N,
                  const int K, const T alpha, const T* A, const T* B,
Y
Yu Yang 已提交
114 115
                  const T beta, T* C, const int batchCount,
                  const int64_t strideA, const int64_t strideB);
Q
QI JUN 已提交
116 117 118 119 120 121 122 123 124 125 126

template <typename DeviceContext, typename T>
void gemv(const DeviceContext& context, const bool trans_a, const int M,
          const int N, const T alpha, const T* A, const T* B, const T beta,
          T* C);

template <typename DeviceContext, typename T>
void axpy(const DeviceContext& context, const int n, const T alpha, const T* x,
          T* y);

template <typename DeviceContext, typename T, int Rank>
127
struct Transpose {
Q
QI JUN 已提交
128 129
  void operator()(const DeviceContext& context, const framework::Tensor& in,
                  framework::Tensor* out, const std::vector<int>& axis);
130 131
};

Q
QI JUN 已提交
132
template <typename DeviceContext, typename T>
Q
qijun 已提交
133
struct SetConstant {
Q
QI JUN 已提交
134 135
  void operator()(const DeviceContext& context, framework::Tensor* tensor,
                  T num);
Q
qijun 已提交
136 137
};

138 139 140 141 142 143 144
template <typename Place>
void set_constant_with_place(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value);

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value);

Q
QI JUN 已提交
145
template <typename DeviceContext, typename T>
146
struct RowwiseAdd {
Q
QI JUN 已提交
147 148
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  const framework::Tensor& vec, framework::Tensor* output);
149 150
};

Q
QI JUN 已提交
151
template <typename DeviceContext, typename T>
152
struct ColwiseSum {
Q
QI JUN 已提交
153 154
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
155 156
};

C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168
template <typename DeviceContext, typename T>
struct RowwiseSum {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

template <typename DeviceContext, typename T>
struct RowwiseMean {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

Q
qijun 已提交
169 170 171
}  // namespace math
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
172 173 174 175 176

#include "paddle/fluid/operators/math/blas_impl.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/operators/math/blas_impl.cu.h"
#endif