recompute.py 21.9 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib

J
JZ-LIANG 已提交
17
import paddle
18 19
from paddle.autograd import PyLayer
from paddle.autograd.py_layer import LegacyPyLayer
20
from paddle.fluid import core, framework
S
ShenLiang 已提交
21
from paddle.fluid.framework import in_dygraph_mode
J
JZ-LIANG 已提交
22

R
Roc 已提交
23
from ..utils.log_util import logger
J
JZ-LIANG 已提交
24

25 26
__all__ = []

J
JZ-LIANG 已提交
27 28 29 30

def detach_variable(inputs):
    out = []
    for inp in inputs:
S
ShenLiang 已提交
31
        if not isinstance(inp, (core.eager.Tensor, core.VarBase)):
J
JZ-LIANG 已提交
32 33 34 35 36 37 38 39 40 41
            out.append(inp)
            continue

        x = inp.detach()
        x.stop_gradient = inp.stop_gradient
        out.append(x)
    return tuple(out)


def check_recompute_necessary(inputs):
42
    if not any(
43
        not input_.stop_gradient
44 45 46
        for input_ in inputs
        if isinstance(input_, (core.eager.Tensor, paddle.Tensor))
    ):
R
Roc 已提交
47
        logger.warning(
J
JZ-LIANG 已提交
48
            "[Recompute]: None of the inputs to current recompute block need grad, "
49 50
            "therefore there is NO need to recompute this block in backward !"
        )
J
JZ-LIANG 已提交
51 52 53


@contextlib.contextmanager
54
def swith_rng_state_tracker(rng_state, tracker):
55 56 57 58
    from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
        get_rng_state_tracker,
    )

J
JZ-LIANG 已提交
59
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
60 61
    orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker()

J
JZ-LIANG 已提交
62
    paddle.set_cuda_rng_state(rng_state)
63
    get_rng_state_tracker().set_states_tracker(tracker)
J
JZ-LIANG 已提交
64 65 66 67
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
68
        get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker)
J
JZ-LIANG 已提交
69 70


71
class LegacyRecomputeFunction(LegacyPyLayer):
S
ShenLiang 已提交
72 73
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
74 75 76
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            get_rng_state_tracker,
        )
S
ShenLiang 已提交
77

78
        # store for recomputing
S
ShenLiang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
105 106 107 108
                    "Recompute with RNG perserve is not support current device: {}.".format(
                        cur_device
                    )
                )
S
ShenLiang 已提交
109
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
110 111 112
            ctx.fwd_cuda_rng_state_tracker = (
                get_rng_state_tracker().get_states_tracker()
            )
S
ShenLiang 已提交
113 114 115

        # TODO support AMP
        tracer = framework._dygraph_tracer()
116 117 118
        ctx.is_fw_autocast = (
            False if tracer._amp_level == core.AmpLevel.O0 else True
        )
S
ShenLiang 已提交
119 120 121 122 123
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
        else:
124 125 126
            raise ValueError(
                "unsupported amp level: {}".format(tracer._amp_level)
            )
S
ShenLiang 已提交
127 128 129 130 131 132

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
133 134 135
            raise ValueError(
                "unsupported amp dtype: {}".format(tracer._amp_dtype)
            )
S
ShenLiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
            if ctx.preserve_rng_state:
162 163 164
                with swith_rng_state_tracker(
                    ctx.fw_cuda_rng_state, ctx.fwd_cuda_rng_state_tracker
                ):
S
ShenLiang 已提交
165
                    with paddle.amp.auto_cast(
166 167 168 169 170 171
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
                        custom_black_list=ctx.amp_black_list,
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype,
                    ):
S
ShenLiang 已提交
172 173 174
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
175 176 177 178 179 180 181
                with paddle.amp.auto_cast(
                    enable=ctx.is_fw_autocast,
                    custom_white_list=ctx.amp_white_list,
                    custom_black_list=ctx.amp_black_list,
                    level=ctx.amp_level,
                    dtype=ctx.amp_dtype,
                ):
S
ShenLiang 已提交
182 183 184
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

185
            if isinstance(outputs, core.VarBase):
186
                outputs = (outputs,)
S
ShenLiang 已提交
187 188 189 190 191
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
192
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
S
ShenLiang 已提交
193 194 195 196
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
            for i in range(len(outputs)):
197 198 199 200
                if (
                    isinstance(outputs[i], core.VarBase)
                    and not outputs[i].stop_gradient
                ):
S
ShenLiang 已提交
201 202 203 204 205 206 207 208 209 210
                    forward_outputs_with_grad.append(outputs[i])
                    backward_inputs_with_grad.append(args[i])

            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

            # actually backward
            with paddle.amp.auto_cast(enable=False):
211 212 213
                paddle.autograd.backward(
                    forward_outputs_with_grad, backward_inputs_with_grad
                )
S
ShenLiang 已提交
214

215 216 217 218 219
            grads = list(
                inp._grad_ivar()
                for inp in detached_inputs
                if isinstance(inp, core.VarBase)
            )
S
ShenLiang 已提交
220 221 222
            return grads


J
JZ-LIANG 已提交
223 224
class RecomputeFunction(PyLayer):
    @staticmethod
225
    def forward(ctx, run_function, preserve_rng_state, *args, **kwargs):
226 227 228
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            get_rng_state_tracker,
        )
J
JZ-LIANG 已提交
229

230
        # store for recomputing
J
JZ-LIANG 已提交
231 232
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state
233
        ctx.kwargs = kwargs
J
JZ-LIANG 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
258 259 260 261
                    "Recompute with RNG perserve is not support current device: {}.".format(
                        cur_device
                    )
                )
J
JZ-LIANG 已提交
262
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
263 264 265
            ctx.fwd_cuda_rng_state_tracker = (
                get_rng_state_tracker().get_states_tracker()
            )
J
JZ-LIANG 已提交
266 267

        # TODO support AMP
268
        tracer = framework._dygraph_tracer()
269 270 271
        ctx.is_fw_autocast = (
            False if tracer._amp_level == core.AmpLevel.O0 else True
        )
272 273 274 275
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
276
        else:
277 278 279
            raise ValueError(
                "unsupported amp level: {}".format(tracer._amp_level)
            )
280 281 282 283 284 285

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
286 287 288
            raise ValueError(
                "unsupported amp dtype: {}".format(tracer._amp_dtype)
            )
289

290
        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()
J
JZ-LIANG 已提交
291 292

        with paddle.no_grad():
293
            outputs = run_function(*args, **kwargs)
J
JZ-LIANG 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        return outputs

    @staticmethod
    def backward(ctx, *args):
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

312 313
            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
J
JZ-LIANG 已提交
314
            if ctx.preserve_rng_state:
315 316 317
                with swith_rng_state_tracker(
                    ctx.fw_cuda_rng_state, ctx.fwd_cuda_rng_state_tracker
                ):
318
                    with paddle.amp.auto_cast(
319 320 321 322 323 324
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
                        custom_black_list=ctx.amp_black_list,
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype,
                    ):
325
                        detached_inputs = detach_variable(tuple(inputs))
326 327 328
                        outputs = ctx.run_function(
                            *detached_inputs, **ctx.kwargs
                        )
329
            else:
330 331 332 333 334 335 336
                with paddle.amp.auto_cast(
                    enable=ctx.is_fw_autocast,
                    custom_white_list=ctx.amp_white_list,
                    custom_black_list=ctx.amp_black_list,
                    level=ctx.amp_level,
                    dtype=ctx.amp_dtype,
                ):
J
JZ-LIANG 已提交
337
                    detached_inputs = detach_variable(tuple(inputs))
338
                    outputs = ctx.run_function(*detached_inputs, **ctx.kwargs)
J
JZ-LIANG 已提交
339

340
            if isinstance(outputs, (core.VarBase, core.eager.Tensor)):
341
                outputs = (outputs,)
J
JZ-LIANG 已提交
342 343 344 345
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
346
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
347
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
348 349 350
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
J
JZ-LIANG 已提交
351
            for i in range(len(outputs)):
352 353 354 355
                if (
                    isinstance(outputs[i], (core.VarBase, core.eager.Tensor))
                    and not outputs[i].stop_gradient
                ):
J
JZ-LIANG 已提交
356
                    forward_outputs_with_grad.append(outputs[i])
357 358
                    backward_inputs_with_grad.append(args[i])

J
JZ-LIANG 已提交
359 360 361 362 363
            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

364 365
            # actually backward
            with paddle.amp.auto_cast(enable=False):
366 367 368
                paddle.autograd.backward(
                    forward_outputs_with_grad, backward_inputs_with_grad
                )
J
JZ-LIANG 已提交
369

370 371
            if in_dygraph_mode():
                grads = tuple(
372 373 374 375
                    inp._grad_ivar()
                    for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor))
                )
376 377
            else:
                grads = list(
378 379 380 381
                    inp._grad_ivar()
                    for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor))
                )
J
JZ-LIANG 已提交
382 383 384 385 386 387 388
            return grads


def recompute(function, *args, **kwargs):
    """
    recompute intermediate activations to save then memory.

389
    Parameters:
390
        function(paddle.nn.Layer): layer of sequence of layers that describes part of forward pass of the model
391 392 393 394 395 396
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs to the function.
        **kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to
              indicate whether to save the forward rng. If it is True, then the last forward rng value will be
              restored when the forward recalculation of backpropagation is performed. The default
397
              preserve_rng_state is True.
J
JZ-LIANG 已提交
398 399

    Returns:
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        Output of function on args.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed.fleet.utils import recompute
            import random
            # required: gpu
            def get_fc_block(block_idx, input_size, is_last=False):
                block_name = "block_" + str(block_idx)
                block = paddle.nn.Sequential(
                    (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
                    (block_name + "_relu_1", paddle.nn.ReLU()),
                    (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_relu_2", paddle.nn.ReLU()),
                )
                if is_last:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(
                            input_size, 1, bias_attr=False
                        )
                    )
                else:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(input_size, input_size, bias_attr=False)
                    )
                return block
            class Naive_fc_net(paddle.nn.Layer):
                def __init__(self, input_size=10,
                            recompute_blocks=[1, 3],
                            recompute_kwargs={}):
435
                    super(Naive_fc_net, self).__init__()
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                    self.recompute_blocks = recompute_blocks
                    self.recompute_kwargs = recompute_kwargs
                    self.runfunc0 = get_fc_block(0, input_size, is_last=False)
                    self.runfunc1 = get_fc_block(1, input_size, is_last=False)
                    self.runfunc2 = get_fc_block(2, input_size, is_last=False)
                    self.runfunc3 = get_fc_block(3, input_size, is_last=False)
                    self.runfunc4 = get_fc_block(4, input_size, is_last=True)
                    self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]
                def forward(self, inputs):
                    nums = len(self.total_func)
                    for i in range(nums):
                        if i in self.recompute_blocks:
                            inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
                        else:
                            inputs = self.total_func[i](inputs)
                    return inputs
            def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
                gen = paddle.seed(10)
                gen.manual_seed(10)
                random.seed(10)
                if cuda_state:
                    paddle.set_cuda_rng_state(cuda_state)
                batch_size, input_size = 1, 10
                model = Naive_fc_net(
                    input_size,
                    recompute_blocks=recompute_block,
                    recompute_kwargs=recompute_kwargs)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                loss_ = []
                param_ = []
                grad_ = []
                for _ in range(5):
468
                    x = paddle.rand(shape=[batch_size, input_size], dtype="float32")
469 470
                    y_pred = model(x)
                    loss = y_pred.mean()
471
                    loss_.append(loss.item())
472 473
                    loss.backward()
                    optimizer.step()
474 475
                    param_.append(model.parameters()[9])
                    grad_.append(model.parameters()[3]._grad_ivar())
476 477 478 479 480 481 482 483 484 485
                    optimizer.clear_grad()
                return loss_, param_, grad_
            cuda_state = paddle.get_cuda_rng_state()
            # without recompute
            loss_ref, param_ref, grad_ref = run_model(
                cuda_state, recompute_block=[]
            )
            loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
            print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
            # The result of the recompute_loss should be the same as the normal_loss.
J
JZ-LIANG 已提交
486 487 488 489
    """
    # Hack to mix *args with **kwargs in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)

490 491 492
    if framework._dygraph_tracer()._has_grad:
        check_recompute_necessary(args)

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    return RecomputeFunction.apply(function, preserve, *args, **kwargs)


def recompute_sequential(ctx, functions, *args, **kwargs):
    """
    recompute intermediate activations to save then memory for 'Sequential' models.

    Parameters:
        ctx(dict): include 'segments' and  'preserve_rng_state' keys, the key 'segments' (int, default 1), represents the number of chunks to create in the model,
                   the key 'preserve_rng_state' (bool, optional, default=True) indicate whether to save the forward rng. If it is True, then the last forward rng value will be
                   restored when the forward recalculation of backpropagation is performed. and some keys such as 'mp_group', 'offload' and 'partition' are invalid here,
                   they are useful in 'recompute_hybrid' API.
        functions(paddle.nn.Sequential): layer of sequence of layers that describes part of forward pass of the model
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs(tuple) to the function.
        **kwargs(Dict): inputs(dict) to the function.

    Returns:
        Output of function on args and kwargs.

    Examples:
        .. code-block:: python

            model = paddle.nn.Sequential(...)
            input = recompute_sequential({'segments' : 1}, model, input)
    """
    segments = ctx.get('segments', 1)
    preserve_rng_state = ctx.get('preserve_rng_state', True)

    def _run_func(begin, end, funcs):
        def do_run(input):
            for i in range(begin, end + 1):
                input = funcs[i](input)
            return input

        return do_run

    if isinstance(functions, paddle.nn.Sequential):
        functions = list(functions.children())

    segment_size = len(functions) // segments

    end = -1
    for begin in range(0, segment_size * (segments - 1), segment_size):
        end = begin + segment_size - 1
539 540 541 542 543 544
        args = recompute(
            _run_func(begin, end, functions),
            *args,
            preserve_rng_state=preserve_rng_state,
            **kwargs
        )
545
    return _run_func(end + 1, len(functions) - 1, functions)(args)