cond_op.cc 7.2 KB
Newer Older
Z
cond op  
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cond_op.h"
Z
zchen0211 已提交
16 17 18 19

#include <cstring>
#include <sstream>

Z
cond op  
zchen0211 已提交
20
#include "paddle/framework/op_registry.h"
Z
zchen0211 已提交
21
#include "paddle/operators/gather.h"
Z
cond op  
zchen0211 已提交
22
#include "paddle/operators/net_op.h"
Z
zchen0211 已提交
23
#include "paddle/operators/scatter.h"
Z
cond op  
zchen0211 已提交
24 25 26 27

namespace paddle {
namespace operators {

Z
zchen0211 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
using DDim = framework::DDim;

void CondOp::CreateScope(const Scope& scope) const {
  auto sub_scopes_var = scope.FindVar("SubScopes");
  PADDLE_ENFORCE(sub_scopes_var != nullptr, "");
  auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
  auto& sub_scope = scope.NewScope();
  sub_scopes->push_back(&sub_scope);
}

void CondOp::CreateIndexTensor(const Scope& scope) const {
  auto index_tensors_var = scope.FindVar("IndexTensors");
  PADDLE_ENFORCE(index_tensors_var != nullptr, "");
  auto& index_tensors = *index_tensors_var->GetMutable<std::vector<Tensor>>();
  index_tensors.push_back(Tensor());
}

void CondOp::InferShape(const Scope& scope) const {
  auto sub_scopes_var = scope.FindVar("SubScopes");
  PADDLE_ENFORCE_NOT_NULL(sub_scopes_var);
  auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();

  for (int i = 0; i < 2; ++i) {
    // Create two sub scopes for true and false branches
    // sub_scopes[0] for the true branch and sub_scopes[1] for the false
    // branch
    CreateScope(scope);

    // Create two tensors for true and false indices
    // index_tensors[0] for the true branch and index_tensors[1] for the false
    // branch
    CreateIndexTensor(scope);

    PADDLE_ENFORCE(!Inputs("Xs").empty(), "Inputs can't be empty");
    for (auto& input : Inputs("Xs")) {
      // Create a new tensor in sub-scope for input-type tensor
      Variable* v = sub_scopes[i]->NewVar(input);
      Tensor* sub_input = v->GetMutable<Tensor>();
      sub_input->Resize(scope.FindVar(input)->GetMutable<Tensor>()->dims());
    }

    for (auto& output : (*sub_net_op_[i]).Outputs()) {
      for (auto& var_name : output.second) {
        sub_scopes[i]->NewVar(var_name);
      }
    }

    // each net calls InferShape
    sub_net_op_[i]->InferShape(*sub_scopes[i]);
  }

  for (auto& output : Outputs("Outs")) {
    Tensor* tensor_t_out = sub_scopes[0]->FindVar(output)->GetMutable<Tensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should be NULL");
    Tensor* tensor_f_out = sub_scopes[1]->FindVar(output)->GetMutable<Tensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "True output should be NULL");

    auto* tensor_out_var = scope.FindVar(output);
    PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
    Tensor* tensor_out = tensor_out_var->GetMutable<Tensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should be NULL");
    // check output size should be same
    PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
                      "Outputs not of the same shape");
    tensor_out->Resize(tensor_t_out->dims());
    tensor_out->mutable_data<float>(tensor_out->dims(), platform::CPUPlace());
  }
}

void CondOp::Run(const Scope& scope,
                 const platform::DeviceContext& dev_ctx) const {
  auto sub_scopes = scope.FindVar("SubScopes")->Get<std::vector<Scope*>>();
  auto index_tensors =
      scope.FindVar("IndexTensors")->Get<std::vector<Tensor>>();

  std::string cond_name = Input("Cond");
  Variable* cond_var = scope.FindVar(cond_name);
  PADDLE_ENFORCE_NOT_NULL(cond_var);
  const Tensor* cond = cond_var->GetMutable<Tensor>();

  // Step 1: get the true/false index at runtime
  // index_[0]: vector<int>, contains all index for cond[i] == true
  // index_[1]: vector<int>, contains all index for cond[i] == false
  for (int i = 0; i < 2; ++i) index_[i].clear();

  const int* cond_data = cond->data<int>();
  for (int i = 0; i < cond->dims()[0]; ++i) {
    if (cond_data[i])
      index_[0].push_back(i);
    else
      index_[1].push_back(i);
  }

  // put index_[0] and index_[1] into two tensors:
  // index_tensor_[0] and index_tensor_[1]
  DDim dim = paddle::framework::make_ddim({0});
  for (int i = 0; i < 2; ++i) {
    dim[0] = index_[i].size();
    int* tmp_ptr =
        index_tensors[i].mutable_data<int>(dim, platform::CPUPlace());
    index_tensors[i].Resize(dim);
    memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
  }

  // Step 2: collect data by calling gather
  for (int i = 0; i < 2; ++i) {
    // i= 0/i for True and False branches respectively
    for (auto& input : Inputs("Xs")) {
      // find Tensor
      Variable* v = scope.FindVar(input);
      PADDLE_ENFORCE_NOT_NULL(v);
      Tensor* tensor_parent = v->GetMutable<Tensor>();

      v = sub_scopes[i]->FindVar(input);
      PADDLE_ENFORCE_NOT_NULL(v);
      Tensor* tensor_child = v->GetMutable<Tensor>();

      // Resize child
      DDim dim = tensor_child->dims();
      dim[0] = index_[i].size();
      tensor_child->Resize(dim);
      tensor_child->mutable_data<float>(dim, platform::CPUPlace());

      Gather<float>(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
                    tensor_child);
    }
  }

  // Step 3: run
  for (int i = 0; i < 2; ++i) sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);

  // Step 4: merge output results
  for (int i = 0; i < 2; ++i) {
    // i= 0/i for True and False branches respectively
    for (auto& output : Outputs("Outs")) {
      // find Tensor
      Variable* v = scope.FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(v);
      Tensor* tensor_parent = v->GetMutable<Tensor>();

      v = sub_scopes[i]->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(v);
      Tensor* tensor_child = v->GetMutable<Tensor>();

      ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
                           tensor_parent);
    }
  }
}

class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
Z
cond op  
zchen0211 已提交
182
 public:
Z
zchen0211 已提交
183 184
  CondOpProtoAndCheckerMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
Z
cond op  
zchen0211 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Cond", "The condition, which is a bool vector");
    AddInput("Xs", "Inputs of Subnets").AsDuplicable();
    AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();

    AddOutput("SubScopes", "sub scopes for true and false branches");
    AddOutput("IndexTensors", "Index Tensors contains indices for true/false");

    AddComment(R"DOC(
Sample dependent Cond Operator:
The equation is: Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

Z
zchen0211 已提交
204
REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
Z
cond op  
zchen0211 已提交
205
                             paddle::operators::CondOpProtoAndCheckerMaker);