prior_box_op.h 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <vector>
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/transform.h"
21
#include "paddle/phi/core/visit_type.h"
22
#include "paddle/phi/kernels/funcs/math_function.h"
W
wanghaox 已提交
23 24 25 26

namespace paddle {
namespace operators {

W
wanghaox 已提交
27 28
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
29
                               std::vector<float>* output_aspect_ratior) {
30
  constexpr float epsilon = 1e-6;
31 32
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
W
wanghaox 已提交
33 34 35
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
36 37
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
W
wanghaox 已提交
38 39 40 41 42
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
43
      output_aspect_ratior->push_back(ar);
W
wanghaox 已提交
44
      if (flip) {
45
        output_aspect_ratior->push_back(1.0f / ar);
W
wanghaox 已提交
46 47 48 49 50
      }
    }
  }
}

51
template <typename T>
W
wanghaox 已提交
52 53 54
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
55 56 57 58 59 60 61 62 63
    auto* image = ctx.Input<phi::DenseTensor>("Image");

    PD_VISIT_FLOATING_TYPES(image->dtype(), "PriorBoxOpHandler", ([&] {
                              PriorBoxOpHandler<data_t>(ctx);
                            }));
  }

  template <typename K>
  void PriorBoxOpHandler(const framework::ExecutionContext& ctx) const {
64 65 66 67
    auto* input = ctx.Input<phi::DenseTensor>("Input");
    auto* image = ctx.Input<phi::DenseTensor>("Image");
    auto* boxes = ctx.Output<phi::DenseTensor>("Boxes");
    auto* vars = ctx.Output<phi::DenseTensor>("Variances");
W
wanghaox 已提交
68

C
chengduoZH 已提交
69 70
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
71 72 73 74
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");
75 76
    auto min_max_aspect_ratios_order =
        ctx.Attr<bool>("min_max_aspect_ratios_order");
W
wanghaox 已提交
77 78

    std::vector<float> aspect_ratios;
79
    ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
W
wanghaox 已提交
80

81 82 83
    K step_w = static_cast<K>(ctx.Attr<float>("step_w"));
    K step_h = static_cast<K>(ctx.Attr<float>("step_h"));
    K offset = static_cast<K>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
84

W
wanghaox 已提交
85 86
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
87

W
wanghaox 已提交
88 89
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
90

91
    K step_width, step_height;
W
wanghaox 已提交
92
    if (step_w == 0 || step_h == 0) {
93 94
      step_width = static_cast<K>(img_width) / feature_width;
      step_height = static_cast<K>(img_height) / feature_height;
W
wanghaox 已提交
95 96 97 98 99 100 101 102 103 104
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

105 106
    boxes->mutable_data<K>(ctx.GetPlace());
    vars->mutable_data<K>(ctx.GetPlace());
W
wanghaox 已提交
107

108
    K* b_t = boxes->data<K>();
W
wanghaox 已提交
109 110
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
111 112 113
        K center_x = (w + offset) * step_width;
        K center_y = (h + offset) * step_height;
        K box_width, box_height;
W
wanghaox 已提交
114
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
115
          auto min_size = min_sizes[s];
116 117
          if (min_max_aspect_ratios_order) {
            box_width = box_height = min_size / 2.;
118 119 120 121 122
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
123 124 125 126
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
127 128 129 130 131
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
132 133 134 135 136 137 138 139 140
            }
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              if (fabs(ar - 1.) < 1e-6) {
                continue;
              }
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
141 142 143 144 145
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
146 147 148 149 150 151 152
            }
          } else {
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
153 154 155 156 157
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
158 159 160 161 162
            }
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
163 164 165 166 167
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
168
            }
W
wanghaox 已提交
169 170 171 172 173 174
          }
        }
      }
    }

    if (clip) {
175 176 177
      K* dt = boxes->data<K>();
      std::transform(dt, dt + boxes->numel(), dt, [](K v) -> K {
        return std::min<K>(std::max<K>(v, 0.), 1.);
178
      });
W
wanghaox 已提交
179
    }
W
wanghaox 已提交
180

181
    phi::DenseTensor var_t;
182
    var_t.mutable_data<K>(
183
        phi::make_ddim({1, static_cast<int>(variances.size())}),
W
wanghaox 已提交
184
        ctx.GetPlace());
185
    auto var_et = phi::EigenTensor<K, 2>::From(var_t);
186 187 188 189

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
W
wanghaox 已提交
190
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
191
      var_et(0, i) = variances[i];
W
wanghaox 已提交
192
    }
W
wanghaox 已提交
193

W
wanghaox 已提交
194
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
195 196 197
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

198
    auto e_vars = phi::EigenMatrix<K, Eigen::RowMajor>::From(*vars);
W
wanghaox 已提交
199

200 201 202 203
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
    for (int i = 0; i < box_num; ++i) {
204
      for (size_t j = 0; j < variances.size(); ++j) {
205 206 207
        e_vars(i, j) = variances[j];
      }
    }
W
wanghaox 已提交
208
    vars->Resize(var_dim);
W
wanghaox 已提交
209
  }
210
};
W
wanghaox 已提交
211 212 213

}  // namespace operators
}  // namespace paddle