mkldnn_quantizer.cc 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
16

17
#include <algorithm>
18
#include <limits>
19 20 21 22
#include <map>
#include <numeric>
#include <unordered_map>
#include <utility>
23

24 25 26 27 28 29 30 31
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
32
#include "paddle/fluid/platform/mkldnn_helper.h"
33 34 35 36 37
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {

38
using LoDTensor = phi::DenseTensor;
39
using framework::Variable;
40
using framework::ir::Graph;
41
using platform::CPUPlace;
42 43
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
M
Michał Gallus 已提交
44 45 46 47 48
using EigenMatrixDoubleArray =
    Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using EigenMatrixArray =
    Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using ConstEigenMatrixArrayMap = Eigen::Map<const EigenMatrixArray>;
49
using string::PrettyLogH1;
50
using VariableNameMap = std::map<std::string, std::vector<std::string>>;
51
static LoDTensor CreateScaleTensor(int64_t channels_num = 1);
52

53
static void check_var(const Variable* var, const std::string& var_name) {
54 55 56
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::PreconditionNotMet("%s is not in the scope", var_name));
57
  PADDLE_ENFORCE_EQ(
58 59
      var->IsType<LoDTensor>(),
      true,
60 61 62 63
      platform::errors::PreconditionNotMet("Only support lod tensor now."));
}

static void check_tensor(const LoDTensor& tensor) {
64
  PADDLE_ENFORCE_GT(
65 66
      tensor.dims().size(),
      0,
67
      platform::errors::InvalidArgument("Tensor dimension is empty."));
68 69
}

70 71
void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForRNNWeights(
    const paddle::framework::OpDesc* op, bool gru) {
72 73 74 75 76 77 78 79 80 81 82
  const auto& wx_names = op->Input("WeightX");
  const auto& wh_names = op->Input("WeightH");
  for (size_t i = 0; i < wx_names.size(); ++i) {
    const auto& wx_name = wx_names[i];
    const auto& wh_name = wh_names[i];
    auto* wx_var = predictor_.sub_scope_->FindVar(wx_name);
    auto* wh_var = predictor_.sub_scope_->FindVar(wh_name);
    check_var(wx_var, wx_name);
    check_var(wh_var, wh_name);
    LoDTensor* wx_tensor = wx_var->GetMutable<LoDTensor>();
    LoDTensor* wh_tensor = wh_var->GetMutable<LoDTensor>();
83 84 85 86 87
    if (gru) {
      scales_[wx_name] = GetMaxChGRUScalingFactor(*wx_tensor, *wh_tensor);
    } else {
      scales_[wx_name] = GetMaxChLSTMScalingFactor(*wx_tensor, *wh_tensor);
    }
88 89 90 91 92 93
  }
}

void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForOpInputs(
    const paddle::framework::OpDesc* op) {
  if (op->Type() == "fusion_gru" || op->Type() == "multi_gru") {
94 95 96
    CalculateScalesForRNNWeights(op, true);
  } else if (op->Type() == "fusion_lstm") {
    CalculateScalesForRNNWeights(op, false);
97 98 99 100 101 102 103 104 105 106
  }
  for (auto const& input : op->Inputs()) {
    for (const auto& var_name : input.second) {
      // skip if scale already computed
      if (scales_.find(var_name) != scales_.end()) continue;
      auto* var = predictor_.sub_scope_->FindVar(var_name);
      check_var(var, var_name);
      LoDTensor* var_tensor = var->GetMutable<LoDTensor>();
      // force unsigned type if already know it
      bool is_unsigned = false;
107 108
      CalculateSingleScale(
          op->Type(), input.first, var_name, *var_tensor, is_unsigned);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    }
  }
}

void AnalysisPredictor::MkldnnQuantizer::CalculateScalesForOpOutputs(
    const paddle::framework::OpDesc* op) {
  for (auto const& output : op->Outputs()) {
    for (const auto& var_name : output.second) {
      // skip if scale already computed
      if (scales_.find(var_name) != scales_.end()) continue;
      auto* var = predictor_.sub_scope_->FindVar(var_name);
      check_var(var, var_name);
      LoDTensor* var_tensor = var->GetMutable<LoDTensor>();
      // force unsigned type if already know it
      bool is_unsigned = false;
      bool compute_scale = true;
125
      if (op->Type() == "conv2d" || op->Type() == "fc") {
126 127 128 129 130 131 132
        // output of conv2d with relu must be unsigned
        std::string fuse_activation =
            op->GetAttrIfExists<std::string>("fuse_activation");
        is_unsigned = (fuse_activation == "relu" || fuse_activation == "relu6");
      } else if (op->Type() == "relu") {
        is_unsigned = true;
      } else if (op->Type() == "transpose2" || op->Type() == "reshape2" ||
133 134
                 op->Type() == "pool2d" || op->Type() == "nearest_interp" ||
                 op->Type() == "nearest_interp_v2") {
135
        auto input_var_name = op->Input("X")[0];
136 137
        PADDLE_ENFORCE_NE(scales_.find(input_var_name),
                          scales_.end(),
138 139 140
                          platform::errors::PreconditionNotMet(
                              "Input scales must be calculated before the "
                              "output scales to infer if output is unsigned."));
Z
Zuza 已提交
141 142 143 144
        if (scales_.find(input_var_name) != scales_.end()) {
          scales_[var_name] = scales_[input_var_name];
        }
        compute_scale = false;
145
      } else if (op->Type() == "slice" || op->Type() == "shape") {
Z
Zuza 已提交
146
        auto input_var_name = op->Input("Input")[0];
147 148
        PADDLE_ENFORCE_NE(scales_.find(input_var_name),
                          scales_.end(),
Z
Zuza 已提交
149 150 151
                          platform::errors::PreconditionNotMet(
                              "Input scales must be calculated before the "
                              "output scales to infer if output is unsigned."));
152 153 154 155 156 157 158 159 160 161
        if (scales_.find(input_var_name) != scales_.end()) {
          scales_[var_name] = scales_[input_var_name];
        }
        compute_scale = false;
      } else if (op->Type() == "concat") {
        // output of ops with unsigned input must be unsigned
        is_unsigned = true;
        double min_scale = std::numeric_limits<double>::max();
        for (auto input_var_name : op->Input("X")) {
          PADDLE_ENFORCE_NE(
162 163
              scales_.find(input_var_name),
              scales_.end(),
164 165 166 167 168 169 170 171 172 173 174 175 176
              platform::errors::PreconditionNotMet(
                  "Input scales must be calculated before the "
                  "output scales to infer if output is unsigned."));
          is_unsigned = is_unsigned && scales_[input_var_name].first;
          min_scale = std::min(
              min_scale, scales_[input_var_name].second.data<double>()[0]);
        }
        auto scale_tensor = CreateScaleTensor();
        scale_tensor.data<double>()[0] = min_scale;
        scales_[var_name] = {is_unsigned, scale_tensor};
        compute_scale = false;
      }
      if (compute_scale) {
177 178
        CalculateSingleScale(
            op->Type(), output.first, var_name, *var_tensor, is_unsigned);
179 180 181 182 183
      }
    }
  }
}

184 185 186 187
bool AnalysisPredictor::MkldnnQuantizer::CalculateScales() {
  PrettyLogH1("--- Calculating scales for quantization");
  std::map<std::string, std::map<std::string, LoDTensor>> gathered_data;
  for (const auto* op : predictor_.inference_program_->Block(0).AllOps()) {
188
    if (platform::HasOpINT8DataType(op)) {
189
      // handle inputs first to let is_unsigned be inferred for the outputs
190 191
      CalculateScalesForOpInputs(op);
      CalculateScalesForOpOutputs(op);
192 193 194 195 196 197
    }
  }
  return true;
}

void AnalysisPredictor::MkldnnQuantizer::CalculateSingleScale(
198 199 200 201
    const std::string& op_type_name,
    const std::string& conn_name,
    const std::string& var_name,
    const LoDTensor& var_tensor,
202 203 204 205
    bool is_unsigned) {
  auto rule = qconfig_->scale_algo(op_type_name, conn_name);
  if (rule == ScaleAlgo::NONE) return;

206
  PADDLE_ENFORCE_GT(
207 208
      var_tensor.numel(),
      0,
209 210 211
      platform::errors::InvalidArgument(
          "MkldnnQuantizer: LoDTensor of variable %s for quantization of op "
          "%s of connection %s should not be empty.",
212 213 214
          var_name,
          op_type_name,
          conn_name));
215 216 217 218 219 220

  switch (rule) {
    case ScaleAlgo::MAX:
      scales_[var_name] = GetMaxScalingFactor(var_tensor, is_unsigned);
      break;
    case ScaleAlgo::MAX_CH:
221 222
      scales_[var_name] = GetMaxChScalingFactor(var_tensor,
                                                is_unsigned,
M
Michał Gallus 已提交
223 224 225
                                                /*is_transposed*/ false);
      break;
    case ScaleAlgo::MAX_CH_T:
226 227
      scales_[var_name] = GetMaxChScalingFactor(var_tensor,
                                                is_unsigned,
M
Michał Gallus 已提交
228
                                                /*is_transposed*/ true);
229 230 231 232 233 234 235 236 237 238
      break;
    case ScaleAlgo::KL:
      scales_[var_name] = GetKLScalingFactor(var_tensor, is_unsigned);
      break;
    default:
      throw std::runtime_error(
          "MkldnnQuantizer: Unexpected ScaleAlgo specified.");
  }
}

239 240 241 242 243 244 245
static LoDTensor CreateScaleTensor(int64_t channels_num) {
  LoDTensor scale_tensor;
  scale_tensor.Resize({channels_num});
  scale_tensor.mutable_data<double>(CPUPlace());
  return scale_tensor;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
std::vector<int> AnalysisPredictor::MkldnnQuantizer::ExpandQuantizedBins(
    std::vector<int> quantized_bins, std::vector<int> reference_bins) const {
  std::vector<int> expanded_quantized_bins(reference_bins.size(), 0);
  int num_merged_bins = reference_bins.size() / quantized_bins.size();
  int j_start = 0;
  int j_end = num_merged_bins;
  for (size_t idx = 0; idx < quantized_bins.size(); idx++) {
    int zero_count =
        std::count(&reference_bins[j_start], &reference_bins[j_end], 0);
    num_merged_bins = j_end - j_start;
    int avg_bin_ele;
    if (zero_count == num_merged_bins) {
      avg_bin_ele = 0;
    } else {
      avg_bin_ele = quantized_bins[idx] / (num_merged_bins - zero_count + 0.0);
    }
    for (int idx1 = j_start; idx1 < j_end; idx1++) {
      expanded_quantized_bins[idx1] =
          (reference_bins[idx1] == 0) ? 0 : avg_bin_ele;
    }
    j_start += num_merged_bins;
    j_end += num_merged_bins;
    if ((idx + 1) == quantized_bins.size() - 1) {
      j_end = reference_bins.size();
    }
  }
  return expanded_quantized_bins;
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetKLScalingFactor(
    const LoDTensor& var_tensor, bool is_unsigned) const {
278 279
  ConstEigenVectorArrayMap eigen_tensor{
      var_tensor.data<float>(), var_tensor.numel(), 1};
280 281 282 283 284
  int precision_hist_num_bins = 2048;
  float max_val = eigen_tensor.maxCoeff();
  float min_val = eigen_tensor.minCoeff();
  bool is_positive = min_val >= 0.0f;
  if (is_unsigned)
285
    PADDLE_ENFORCE_EQ(
286 287
        is_positive,
        true,
288 289 290
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

  int num_quantized_bins = 255;

  std::vector<int> hist;
  float bin_width;
  int starting_iter;
  int ending_iter = precision_hist_num_bins - 1;
  if (is_positive) {
    std::tie(hist, bin_width) =
        Histogram(var_tensor, min_val, max_val, precision_hist_num_bins);
    starting_iter = static_cast<int>(ending_iter * 0.7);
  } else {
    float th = std::max(std::abs(max_val), std::abs(min_val));
    std::tie(hist, bin_width) =
        Histogram(var_tensor, -th, th, precision_hist_num_bins);
    starting_iter = 0;
    if (std::abs(max_val) > std::abs(min_val)) {
      while (starting_iter < ending_iter) {
        if (hist[starting_iter] == 0) {
          ++starting_iter;
          continue;
        } else {
          break;
        }
      }
      starting_iter += static_cast<int>((ending_iter - starting_iter) * 0.6);
    } else {
      while (ending_iter > 0) {
        if (hist[ending_iter] == 0) {
          --ending_iter;
          continue;
        } else {
          break;
        }
      }
      starting_iter = static_cast<int>(0.6 * ending_iter);
    }
  }
  auto P_sum = eigen_tensor.size();
  int min_kl_divergence = 0;
  int min_kl_index = 0;
  bool kl_inited = false;
  for (int i = starting_iter; i <= ending_iter; i++) {
    std::vector<int> reference_distr_P(&hist[0], &hist[i]);
    auto outliers_count =
        std::accumulate(&hist[i], &hist[precision_hist_num_bins], 0);
337
    if (i <= 0 || reference_distr_P[i - 1] == 0) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
      continue;
    }
    reference_distr_P[i - 1] += outliers_count;
    auto reference_distr_bins = reference_distr_P;
    std::vector<int> candidate_distr_Q(&hist[0], &hist[i]);
    int num_merged_bins = i / num_quantized_bins;
    std::vector<int> candidate_distr_Q_quantized(num_quantized_bins, 0);
    int j_start = 0;
    int j_end = num_merged_bins;
    for (int idx = 0; idx < num_quantized_bins; idx++) {
      candidate_distr_Q_quantized[idx] = std::accumulate(
          &candidate_distr_Q[j_start], &candidate_distr_Q[j_end], 0);
      j_start += num_merged_bins;
      j_end += num_merged_bins;
      if ((idx + 1) == num_quantized_bins - 1) {
        j_end = i;
      }
    }
    candidate_distr_Q =
        ExpandQuantizedBins(candidate_distr_Q_quantized, reference_distr_bins);
    int Q_sum =
        std::accumulate(candidate_distr_Q.begin(), candidate_distr_Q.end(), 0);
    auto kl_divergence =
        SafeEntropy(reference_distr_P, P_sum, candidate_distr_Q, Q_sum);
    if (!kl_inited) {
      min_kl_divergence = kl_divergence;
      min_kl_index = i;
      kl_inited = true;
    } else if (kl_divergence < min_kl_divergence) {
      min_kl_divergence = kl_divergence;
      min_kl_index = i;
    } else {
    }
  }
  if (min_kl_index == 0) {
    while (starting_iter > 0) {
      if (hist[starting_iter] == 0) {
        starting_iter -= 1;
        continue;
      } else {
        break;
      }
    }
    min_kl_index = starting_iter;
  }

384 385
  LoDTensor scale_tensor = CreateScaleTensor();
  scale_tensor.data<double>()[0] = 1.0 / ((min_kl_index + 0.5) * bin_width);
386 387 388 389 390 391 392

  return std::make_pair(is_unsigned, scale_tensor);
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxScalingFactor(
    const LoDTensor& var_tensor, bool is_unsigned) const {
393 394
  ConstEigenVectorArrayMap eigen_tensor{
      var_tensor.data<float>(), var_tensor.numel(), 1};
395 396 397
  float max_abs = eigen_tensor.abs().maxCoeff();
  float min_val = eigen_tensor.minCoeff();
  if (is_unsigned)
398
    PADDLE_ENFORCE_GE(
399 400
        min_val,
        0.0f,
401 402 403
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
404

405 406
  LoDTensor scale_tensor = CreateScaleTensor();
  scale_tensor.data<double>()[0] = 1.0 / max_abs;
407 408 409 410 411 412

  return std::make_pair(is_unsigned, scale_tensor);
}

std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChScalingFactor(
M
Michał Gallus 已提交
413
    const LoDTensor& var_tensor, bool is_unsigned, bool is_transposed) const {
414
  check_tensor(var_tensor);
415

416 417
  ConstEigenVectorArrayMap eigen_tensor{
      var_tensor.data<float>(), var_tensor.numel(), 1};
418 419
  float min_val = eigen_tensor.minCoeff();
  if (is_unsigned)
420
    PADDLE_ENFORCE_GE(
421 422
        min_val,
        0.0f,
423 424 425
        platform::errors::InvalidArgument(
            "Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
            min_val));
426

M
Michał Gallus 已提交
427 428
  auto dims = var_tensor.dims();
  constexpr int num_col_dims = 1;
429
  auto flattened_dims = phi::flatten_to_2d(dims, num_col_dims);
M
Michał Gallus 已提交
430 431
  ConstEigenMatrixArrayMap eigen_tensor_mat{
      var_tensor.data<float>(), flattened_dims[0], flattened_dims[1]};
432

M
Michał Gallus 已提交
433 434 435 436 437
  EigenMatrixDoubleArray scales;
  if (is_transposed) {
    scales = 1.0 / eigen_tensor_mat.cast<double>().abs().colwise().maxCoeff();
  } else {
    scales = 1.0 / eigen_tensor_mat.cast<double>().abs().rowwise().maxCoeff();
438
  }
M
Michał Gallus 已提交
439 440 441 442 443
  int output_channel_axis = is_transposed;
  int channels = dims[output_channel_axis];
  LoDTensor scale_tensor = CreateScaleTensor(channels);
  auto* scale_ptr = scale_tensor.mutable_data<double>(CPUPlace());
  std::copy(scales.data(), scales.data() + scales.size(), scale_ptr);
444 445 446 447

  return std::make_pair(is_unsigned, scale_tensor);
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChGRUScalingFactor(
    const LoDTensor& wx_tensor, const LoDTensor& wh_tensor) const {
  check_tensor(wx_tensor);
  check_tensor(wh_tensor);

  int OC = wh_tensor.dims()[0];
  std::vector<float> scale_ur(2 * OC);
  std::vector<float> scale_o(OC);

  for (int row_id = 0; row_id < wx_tensor.dims()[0]; row_id++) {
    for (int col_id = 0; col_id < 2 * OC; col_id++) {
      int idx = (row_id * wx_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wx_tensor.data<float>()[idx]);
      if (row_id == 0) {
        scale_ur[col_id] = abs_value;
      } else {
        if (abs_value > scale_ur[col_id]) scale_ur[col_id] = abs_value;
      }
    }
  }

  for (int i = 0; i < 2 * OC * OC; i++) {
    int col_id = i % (2 * OC);
    auto abs_value = std::abs(wh_tensor.data<float>()[i]);
    if (abs_value > scale_ur[col_id]) scale_ur[col_id] = abs_value;
  }

  for (int row_id = 0; row_id < wx_tensor.dims()[0]; row_id++) {
    for (int col_id = 2 * OC; col_id < wx_tensor.dims()[1]; col_id++) {
      int idx = (row_id * wx_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wx_tensor.data<float>()[idx]);
      if (row_id == 0) {
        scale_o[col_id % OC] = abs_value;
      } else {
        if (abs_value > scale_o[col_id]) scale_o[col_id % OC] = abs_value;
      }
    }
  }

  for (int i = 2 * OC * OC; i < OC * wh_tensor.dims()[1]; i++) {
    int col_id = i % OC;
    auto abs_value = std::abs(wh_tensor.data<float>()[i]);
    if (abs_value > scale_o[col_id]) scale_o[col_id] = abs_value;
  }
  scale_ur.insert(scale_ur.end(), scale_o.begin(), scale_o.end());
494 495 496
  transform(scale_ur.begin(), scale_ur.end(), scale_ur.begin(), [](float& c) {
    return 1 / c;
  });
497 498 499 500 501 502 503
  LoDTensor scale_tensor = CreateScaleTensor(scale_ur.size());
  auto* scale_ptr = scale_tensor.mutable_data<double>(CPUPlace());
  std::copy(scale_ur.begin(), scale_ur.end(), scale_ptr);
  bool is_unsigned = false;
  return std::make_pair(is_unsigned, scale_tensor);
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChLSTMScalingFactor(
    const LoDTensor& wx_tensor, const LoDTensor& wh_tensor) const {
  check_tensor(wx_tensor);
  check_tensor(wh_tensor);

  std::vector<float> scale(wx_tensor.dims()[1]);

  for (int row_id = 0; row_id < wx_tensor.dims()[0]; row_id++) {
    for (int col_id = 0; col_id < wx_tensor.dims()[1]; col_id++) {
      int idx = (row_id * wx_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wx_tensor.data<float>()[idx]);
      if (row_id == 0) {
        scale[col_id] = abs_value;
      } else {
        if (abs_value > scale[col_id]) scale[col_id] = abs_value;
      }
    }
  }
  for (int row_id = 0; row_id < wh_tensor.dims()[0]; row_id++) {
    for (int col_id = 0; col_id < wh_tensor.dims()[1]; col_id++) {
      int idx = (row_id * wh_tensor.dims()[1]) + col_id;
      auto abs_value = std::abs(wh_tensor.data<float>()[idx]);
      if (abs_value > scale[col_id]) scale[col_id] = abs_value;
    }
  }
530 531 532
  transform(scale.begin(), scale.end(), scale.begin(), [](float& c) {
    return 1 / c;
  });
533 534 535 536 537 538 539
  LoDTensor scale_tensor = CreateScaleTensor(scale.size());
  auto* scale_ptr = scale_tensor.mutable_data<double>(CPUPlace());
  std::copy(scale.begin(), scale.end(), scale_ptr);
  bool is_unsigned = false;
  return std::make_pair(is_unsigned, scale_tensor);
}

540 541
std::pair<std::vector<int>, float>
AnalysisPredictor::MkldnnQuantizer::Histogram(
542
    const phi::DenseTensor& var_tensor,
543 544
    float min_val,
    float max_val,
545
    size_t num_bins) const {
546 547
  PADDLE_ENFORCE_GT(num_bins,
                    0,
548 549 550
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, num_bins (" +
                        std::to_string(num_bins) + ") must be positive."));
551 552
  PADDLE_ENFORCE_GT(var_tensor.numel(),
                    0,
553 554 555
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, the tensor "
                        "must not be empty."));
556 557
  PADDLE_ENFORCE_GE(max_val,
                    min_val,
558 559
                    platform::errors::InvalidArgument(
                        "MkldnnQuantizer: To calculate Histogram, max_val (" +
560 561 562
                        std::to_string(max_val) +
                        ") must be greater or equal"
                        "to min_val (" +
563
                        std::to_string(min_val) + ")."));
564 565
  ConstEigenVectorArrayMap eigen_tensor{
      var_tensor.data<float>(), var_tensor.numel(), 1};
566 567 568 569 570 571 572 573 574 575 576 577 578
  auto bin_width = std::abs(max_val - min_val) / num_bins;
  std::vector<int> hist(num_bins);

  for (int i = 0; i < eigen_tensor.size(); i++) {
    int bin = std::min(
        num_bins - 1,
        static_cast<size_t>(floor((eigen_tensor[i] - min_val) / bin_width)));
    ++hist[bin];
  }

  return std::make_pair(std::move(hist), std::move(bin_width));
}

579 580 581 582
void AnalysisPredictor::MkldnnQuantizer::ClearDeviceContext() const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(predictor_.place_);
583 584
  dev_ctx->ResetBlobMap(
      paddle::platform::MKLDNNDeviceContext::tls().get_curr_exec());
585 586
}

587 588 589 590 591 592
void AnalysisPredictor::MkldnnQuantizer::PrepareArgument() const {
  auto& arg = predictor_.argument_;
  if (!arg.scope_valid()) arg.SetScope(new framework::Scope);
  arg.SetMainProgramNotOwned(predictor_.inference_program_.get());
  auto graph = std::unique_ptr<Graph>(new Graph(arg.main_program()));
  arg.SetMainGraph(graph.release());
593
  auto* scope_ptr = arg.scope_ptr();
594 595 596
  PADDLE_ENFORCE_NOT_NULL(
      scope_ptr,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
597
  arg.main_graph().SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
598 599

  auto* builder = predictor_.config_.pass_builder();
600 601
  builder->SetPasses({"cpu_quantize_pass",
                      "cpu_quantize_squash_pass",
602 603
                      "int8_scale_calculation_mkldnn_pass",
                      "params_quantization_mkldnn_pass"});
604 605 606
  if (predictor_.config_.ir_debug_) builder->TurnOnDebug();
  auto passes = builder->AllPasses();
  predictor_.argument_.SetIrAnalysisPasses(passes);
607 608 609 610
  predictor_.argument_.SetAnalysisPasses({"ir_graph_clean_pass",
                                          "ir_analysis_pass",
                                          "memory_optimize_pass",
                                          "ir_graph_to_program_pass"});
611 612 613 614 615 616
  predictor_.argument_.SetQuantVarScales(scales_);
}

bool AnalysisPredictor::MkldnnQuantizer::Quantize() {
  if (!RunWarmup()) return false;
  if (!CalculateScales()) return false;
617
  ClearDeviceContext();
618 619 620 621 622 623 624 625 626
  predictor_.PrepareScope(predictor_.scope_);
  predictor_.CreateExecutor();
  if (!RunQuantizePasses()) return false;
  predictor_.PrepareExecutor();
  predictor_.PrepareFeedFetch();
  return true;
}

bool AnalysisPredictor::MkldnnQuantizer::RunQuantizePasses() const {
627 628
  predictor_.executor_->CreateVariables(
      *predictor_.inference_program_, 0, true, predictor_.sub_scope_);
629 630 631
  PrepareArgument();
  auto& arg = predictor_.argument_;
  Analyzer().Run(&arg);
632
  PADDLE_ENFORCE_EQ(
633 634
      arg.scope_valid(),
      true,
635
      platform::errors::PreconditionNotMet("The scope should be valid."));
636 637 638 639 640
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&arg), ir_analyzed_program);
  predictor_.inference_program_.reset(
      new framework::ProgramDesc(arg.ir_analyzed_program()));
  LOG(INFO) << "== optimize 2 end ==";
641 642
  predictor_.executor_->CreateVariables(
      *predictor_.inference_program_, 0, false, predictor_.sub_scope_);
643 644 645 646 647 648 649
  return true;
}

bool AnalysisPredictor::MkldnnQuantizer::RunWarmup() const {
  VLOG(3) << "Predictor: run a quantization warmup iteration";
  auto warmup_data = qconfig_->warmup_data();
  PADDLE_ENFORCE_NOT_NULL(warmup_data,
650 651
                          platform::errors::PreconditionNotMet(
                              "Warmup data cannot be NULL in the config."));
652 653 654 655 656 657 658 659 660 661
  PrettyLogH1("--- Running warmup iteration for quantization");

  // Run the inference program
  std::vector<PaddleTensor> output_slots;
  predictor_.Run(*warmup_data, &output_slots, qconfig_->warmup_batch_size());

  return true;
}

float AnalysisPredictor::MkldnnQuantizer::SafeEntropy(
662 663 664 665 666 667
    std::vector<int> reference_distr_P,
    int P_sum,
    std::vector<int> candidate_distr_Q,
    int Q_sum) const {
  PADDLE_ENFORCE_EQ(reference_distr_P.size(),
                    candidate_distr_Q.size(),
668 669
                    platform::errors::InvalidArgument(
                        "The P size %d should be equal to Q size %d",
670 671
                        reference_distr_P.size(),
                        candidate_distr_Q.size()));
672 673 674 675 676 677 678 679 680
  float tmp_sum1 = 0;
  float tmp_sum2 = 0;
  for (size_t idx = 0; idx < reference_distr_P.size(); idx++) {
    int p_idx = reference_distr_P[idx];
    int q_idx = candidate_distr_Q[idx];
    if (p_idx == 0) {
      tmp_sum1 += 0;
      tmp_sum2 += 0;
    } else {
681
      PADDLE_ENFORCE_NE(
682 683
          q_idx,
          0,
684 685 686
          platform::errors::PreconditionNotMet(
              "MkldnnQuantizer: Fatal error!, idx = " + std::to_string(idx) +
              " qindex = 0! p_idx = " + std::to_string(p_idx)));
687 688 689 690 691 692 693 694
    }
    tmp_sum1 += p_idx * (log(Q_sum * p_idx));
    tmp_sum2 += p_idx * (log(P_sum * q_idx));
  }
  return (tmp_sum1 - tmp_sum2) / P_sum;
}

}  // namespace paddle