sequence_expand_op.h 3.9 KB
Newer Older
W
wanghaoshuang 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16 17

#pragma once

#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
18
#include "paddle/memory/memcpy.h"
W
wanghaoshuang 已提交
19
#include "unsupported/Eigen/CXX11/Tensor"
W
wanghaoshuang 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
27
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
33
    auto x_dims = x->dims();
W
wanghaoshuang 已提交
34
    auto* y = context.Input<LoDTensor>("Y");
35 36
    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims[0]),
                      y->lod().back().size() - 1,
W
wanghaoshuang 已提交
37 38 39
                      "The size of last lod level in Input(Y)"
                      "must be equal to dims[0] of Input(X).");
    out->set_lod(y->lod());
Q
QI JUN 已提交
40 41
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
W
wanghaoshuang 已提交
42 43
    size_t element_len = framework::product(x_dims) / x_dims[0];
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
44 45 46 47 48 49 50 51 52
    auto out_starts = out->lod().back();

    for (size_t i = 0; i < out_starts.size() - 1; i++) {
      int scale = out_starts[i + 1] - out_starts[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          x_t(x_data, 1, element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          out_t(out_data, scale, element_len);
Y
Yu Yang 已提交
53
      Eigen::array<int, 2> cast({{scale, 1}});
Q
QI JUN 已提交
54
      out_t.device(*place) = x_t.broadcast(cast);
W
wanghaoshuang 已提交
55 56
      x_data += element_len;
      out_data += element_len * scale;
W
wanghaoshuang 已提交
57
    }
W
wanghaoshuang 已提交
58 59 60
  }
};

61 62 63 64 65 66 67 68 69 70 71 72
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
Q
QI JUN 已提交
73
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
74
class SequenceExpandGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
75 76
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
77 78 79
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Input<LoDTensor>("Out");
W
wanghaoshuang 已提交
80
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
81
    auto out_last_level = out->lod().back();
W
wanghaoshuang 已提交
82 83 84
    d_x->set_lod(x->lod());
    const T* d_out_data = d_out->data<T>();
    T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
85
    size_t element_len = d_out->numel() / d_out->dims()[0];
W
wanghaoshuang 已提交
86 87 88 89 90 91 92
    for (size_t i = 0; i < out_last_level.size() - 1; ++i) {
      size_t repeat = out_last_level[i + 1] - out_last_level[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
      d_out_t(d_out_data, static_cast<int>(repeat), element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>
      d_x_t(d_x_data, static_cast<int>(element_len));
Q
QI JUN 已提交
93 94 95
      auto place =
          context.template device_context<DeviceContext>().eigen_device();
      d_x_t.device(*place) = d_out_t.sum(Eigen::array<int, 1>({{0}}));
W
wanghaoshuang 已提交
96 97
      d_out_data += (repeat * element_len);
      d_x_data += element_len;
W
wanghaoshuang 已提交
98
    }
W
wanghaoshuang 已提交
99 100 101 102 103
  }
};

}  // namespace operators
}  // namespace paddle