lookup_table_op.h 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17
#include "paddle/framework/eigen.h"
18
#include "paddle/framework/lod_tensor.h"
19
#include "paddle/framework/op_registry.h"
20
#include "paddle/framework/selected_rows.h"
21 22 23 24

namespace paddle {
namespace operators {

F
fengjiayi 已提交
25
using LoDTensor = framework::LoDTensor;
26
using SelectedRows = framework::SelectedRows;
27 28

template <typename T>
Y
Yu Yang 已提交
29
class LookupTableKernel : public framework::OpKernel<T> {
30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
32 33 34
    auto* table_t = context.Input<LoDTensor>("W");      // float tensor
    auto* ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto* output_t = context.Output<LoDTensor>("Out");  // float tensor
35

F
fengjiayi 已提交
36 37
    int N = table_t->dims()[0];
    int D = table_t->dims()[1];
F
fengjiayi 已提交
38 39 40
    auto* ids = ids_t->data<int64_t>();
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
41
    for (int64_t i = 0; i < ids_t->numel(); ++i) {
42 43 44 45 46 47 48 49
      PADDLE_ENFORCE_LT(ids[i], N);
      PADDLE_ENFORCE_GE(ids[i], 0);
      memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
50
class LookupTableGradKernel : public framework::OpKernel<T> {
51 52
 public:
  void Compute(const framework::ExecutionContext& context) const override {
53 54
    bool is_sparse = context.Attr<bool>("is_sparse");
    if (is_sparse) {
F
fengjiayi 已提交
55 56 57
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
58
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
59

60 61
      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();
62

63 64 65 66 67 68
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
69

70 71 72 73 74 75 76 77 78 79 80 81
      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table_value->data<T>();

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
F
fengjiayi 已提交
82 83 84 85
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto* table = context.Input<LoDTensor>("W");
86 87 88 89 90 91 92 93 94 95

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table->mutable_data<T>(context.GetPlace());

96 97
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

98 99 100 101
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
102
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
103
        }
104 105 106 107 108 109 110
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle