prelu_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/prelu_op.h"
13
#include <memory>
14
#include <string>
Z
zchen0211 已提交
15 16 17 18

namespace paddle {
namespace operators {

Z
fix  
zchen0211 已提交
19
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
20
 public:
Z
fix  
zchen0211 已提交
21
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
22 23 24 25
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

26
  void InferShape(framework::InferShapeContext *ctx) const override {
J
jerrywgz 已提交
27 28 29
    std::string mode = ctx->Attrs().Get<std::string>("mode");

    auto x_dim = ctx->GetInputDim("X");
J
jerrywgz 已提交
30 31 32 33
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of PreluOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Alpha"),
                   "Input(Alpha) of PreluOp should not be null");
J
jerrywgz 已提交
34

J
jerrywgz 已提交
35 36
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PreluOp should not be null");
J
jerrywgz 已提交
37 38 39 40 41 42 43 44 45
    if (mode == "all") {
      PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1,
                     "For mode 'all', size of weight Alpha must be one.");
    } else if (mode == "channel") {
      PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == x_dim[1],
                     "For channel-wise mode, size of weight Alpha must be "
                     "equal to the number of channels, should be %d",
                     x_dim[1]);
    } else if (mode == "element") {
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
      auto alpha_dim = ctx->GetInputDim("Alpha");
      auto alpha_rank = alpha_dim.size();
      auto x_rank = x_dim.size();
      size_t x_product = 1;
      size_t alpha_product = 1;
      PADDLE_ENFORCE_EQ(alpha_rank, x_rank,
                        "For element-wise mode, rank of weight Alpha must be ",
                        "equal to the rank of input.");
      for (int64_t i = x_rank - 1; i > 0; i--) {
        x_product *= x_dim[i];
        alpha_product *= alpha_dim[i];
      }
      PADDLE_ENFORCE_EQ(x_product, alpha_product,
                        "For element-wise mode, size of weight Alpha must be "
                        "equal to the number of input.");
J
jerrywgz 已提交
61 62 63
    } else {
      PADDLE_THROW("Unkown mode %s", mode);
    }
64
    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
65
    ctx->ShareLoD("X", /*->*/ "Out");
Z
zchen0211 已提交
66
  }
J
jerrywgz 已提交
67 68 69 70

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
71 72 73
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
J
jerrywgz 已提交
74
  }
Z
zchen0211 已提交
75 76
};

Z
fix  
zchen0211 已提交
77
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
78
 public:
Y
Yu Yang 已提交
79
  void Make() override {
Z
zchen0211 已提交
80
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
81 82 83 84
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
85
The equation is:
K
kexinzhao 已提交
86 87 88 89 90 91 92
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
93
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
94
or not. And the output shares the LoD information with input `X`.
95
There are modes:
J
jerrywgz 已提交
96 97
  all: all elements share same weight
  channel: elements in a channel share same weight
98
  element: each element has a weight
Z
zchen0211 已提交
99
)DOC");
J
jerrywgz 已提交
100 101
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
Z
zchen0211 已提交
102 103 104 105
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
106
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
107 108 109
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

110
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
111 112 113
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
J
jerrywgz 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
128 129 130
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Z
zchen0211 已提交
131 132 133
  }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());

    return op;
  }
};

Z
zchen0211 已提交
154 155 156 157 158
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

159 160 161
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>);
162
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
Q
QI JUN 已提交
163
REGISTER_OP_CPU_KERNEL(
164 165
    prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
166
REGISTER_OP_CPU_KERNEL(
167 168
    prelu_grad, ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluGradKernel<paddle::platform::CPUDeviceContext, double>);