addmm_op.cc 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/addmm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {

using framework::OpKernelType;
using framework::Tensor;

class AddMMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      platform::errors::NotFound(
                          "Input(Input) of AddMMOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of AddMMOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Y"), true,
        platform::errors::NotFound("Input(Y) of AddMMOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of AddMMOp should not be null."));

    auto input_dims = ctx->GetInputDim("Input");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto ndim_input = input_dims.size();
    auto ndim_x = x_dims.size();
    auto ndim_y = y_dims.size();

    float alpha = ctx->Attrs().Get<float>("Alpha");
    float beta = ctx->Attrs().Get<float>("Beta");

    VLOG(3) << "addmm operator input.shape=" << input_dims
            << " x.shape=" << x_dims << " y.shape=" << y_dims
            << " beta=" << beta << " alpha=" << alpha
            << " ndim_input=" << ndim_input << " ndim_x=" << ndim_x
            << " ndim_y=" << ndim_y;

65
    PADDLE_ENFORCE_NE(pten::product(input_dims), 0,
66 67 68 69 70 71 72
                      platform::errors::PreconditionNotMet(
                          "The Input variable Input(%s) has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Input").front()));

73
    PADDLE_ENFORCE_NE(pten::product(x_dims), 0,
74 75 76 77 78 79 80
                      platform::errors::PreconditionNotMet(
                          "The Input variable X(%s) has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("X").front()));

81
    PADDLE_ENFORCE_NE(pten::product(y_dims), 0,
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                      platform::errors::PreconditionNotMet(
                          "The Input variable Y(%s) has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Y").front()));
    // dim check
    PADDLE_ENFORCE_EQ(ndim_input, 2,
                      platform::errors::InvalidArgument(
                          "The input tensor input's dimension must be 2. "
                          "But received input's dimension = [%s].",
                          ndim_input));
    PADDLE_ENFORCE_EQ(ndim_x, 2,
                      platform::errors::InvalidArgument(
                          "The input tensor x's dimension must be 2. "
                          "But received x's dimension = [%s].",
                          ndim_x));
    PADDLE_ENFORCE_EQ(ndim_y, 2,
                      platform::errors::InvalidArgument(
                          "The input tensor y's dimension must be 2. "
                          "But received y's dimension = [%s].",
                          ndim_y));

    std::vector<int64_t> output_dims;
    output_dims.push_back(x_dims[0]);
    output_dims.push_back(y_dims[1]);

109
    ctx->SetOutputDim("Out", pten::make_ddim(output_dims));
110 111 112 113 114 115 116 117 118 119 120 121
    ctx->ShareLoD("Input", /*->*/ "Out");
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
122
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
};

class AddMMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor), tensor to be added to the final result.");
    AddInput("X", "(Tensor), The first input tensor for mul.");
    AddInput("Y", "(Tensor), The second input tensor for mul.");
    AddOutput("Out", "(Tensor), The output tensor of addmm op.");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
147 148
        .SetDefault(false)
        .AsExtra();
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    AddAttr<float>("Alpha", "coefficient of x*y.").SetDefault(1.0f);
    AddAttr<float>("Beta", "coefficient of input.").SetDefault(1.0f);
    AddComment(R"DOC(
AddMM Operator.
This operator is used to perform matrix multiplication for input $x$ and $y$ with coefficient $alpha$.
$input$ with coefficient $beta$ is added to the final result. 
The equation is:

$$Out = alpha * x * y + beta * input$$

$x$ and $y$ must be two-dimensional, and $input$ can be broadcastable.
)DOC");
  }
};

class AddMMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::NotFound("Input(Input) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Y"), true,
        platform::errors::NotFound("Input(Y) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Input(Out@GRAD) should not be null"));
    const auto& input_dims = ctx->GetInputDim("Input");
    const auto& x_dims = ctx->GetInputDim("X");
    const auto& y_dims = ctx->GetInputDim("Y");

    auto input_grad_name = framework::GradVarName("Input");
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(input_grad_name)) {
      ctx->SetOutputDim(input_grad_name, input_dims);
    }
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

template <typename T>
class AddMMOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("addmm_grad");
    retv->SetInput("Input", this->Input("Input"));
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(addmm, ops::AddMMOp, ops::AddMMOpMaker,
                  ops::AddMMOpGradMaker<paddle::framework::OpDesc>,
                  ops::AddMMOpGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(addmm_grad, ops::AddMMGradOp);

REGISTER_OP_CPU_KERNEL(
    addmm, ops::AddMMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AddMMKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    addmm_grad, ops::AddMMGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AddMMGradKernel<paddle::platform::CPUDeviceContext, double>);