test_recurrent_op.py 13.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
C
chengduo 已提交
18
import paddle.fluid as fluid
19 20 21 22
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
23
import numpy as np
24
import paddle.fluid.core as core
S
fix res  
superjom 已提交
25 26


Y
Yu Yang 已提交
27 28 29 30
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
31

32 33
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
34 35 36

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
37 38
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
39 40 41 42

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
76 77 78

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
79
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
80 81
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
82 83
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
84

Y
Yu Yang 已提交
85 86
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
87

Y
Yu Yang 已提交
88 89
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
90 91


Y
Yu Yang 已提交
92 93 94
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
95 96 97
    return tensor


Y
Yu Yang 已提交
98
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
99 100 101
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
102
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
103 104 105 106 107
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
108
        - h
Y
Yan Chunwei 已提交
109 110
    '''

Y
Yu Yang 已提交
111 112 113 114
    input_dim = 2
    batch_size = 1
    sent_len = 1

115 116 117
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
118
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
119

S
superjom 已提交
120
    def setUp(self):
121
        self.setup_program()
Y
Yu Yang 已提交
122
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
123

Y
Yu Yang 已提交
124 125 126 127
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
128 129
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
130 131

    def create_rnn_op(self):
132
        x = layers.data(
Y
Yu Yang 已提交
133
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
134
            dtype='float32',
Y
Yu Yang 已提交
135
            name='x',
C
chengduo 已提交
136
            append_batch_size=False)
Y
Yu Yang 已提交
137
        x.stop_gradient = False
138
        h_boot = layers.data(
C
chengduo 已提交
139
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
140
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
141

C
chengduo 已提交
142
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
143 144 145 146
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

147 148
            h = layers.scale(
                x=layers.elementwise_add(
C
chengduo 已提交
149 150
                    x=h_pre, y=x_t),
                scale=self.py_rnn.scale)
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
163
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
164 165 166
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
167
        return out[0]
Y
Yu Yang 已提交
168 169 170 171 172 173 174

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
175
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
176 177 178 179
            for x in self.data_field
        ]

        exe = Executor(self.place)
180 181
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
182 183
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
184 185 186 187

    def test_backward(self):
        self.check_forward()

C
chengduo 已提交
188 189
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197 198 199 200

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
                    num_grad[idx], ana_grad[idx], rtol=0.1).all())

    def check_forward(self):
S
superjom 已提交
201 202 203
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
S
superjom 已提交
204
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
Y
Yan Chunwei 已提交
205

Y
Yu Yang 已提交
206 207 208 209 210 211 212 213 214
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
215

Y
Yu Yang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
247
        self.setup_program()
Y
Yu Yang 已提交
248 249 250 251 252 253 254

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
255 256
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
257 258

    def create_rnn_op(self):
259
        x = layers.data(
Y
Yu Yang 已提交
260
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
261
            dtype='float32',
Y
Yu Yang 已提交
262
            name='x',
C
chengduo 已提交
263
            append_batch_size=False)
Y
Yu Yang 已提交
264
        x.stop_gradient = False
265
        h_boot = layers.data(
C
chengduo 已提交
266
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
267
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
268

C
chengduo 已提交
269
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
270 271 272 273
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

274 275
            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
Y
Yu Yang 已提交
276
                               param_attr='W',
C
chengduo 已提交
277
                               bias_attr=False)
278 279
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
Y
Yu Yang 已提交
280
                               param_attr='U',
C
chengduo 已提交
281
                               bias_attr=False)
282

C
chengduo 已提交
283
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
284 285 286 287 288 289 290

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


291
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
308 309
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
337
        self.setup_program()
Y
Yu Yang 已提交
338 339 340 341 342

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
343 344
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
345

C
chengduo 已提交
346 347
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
348 349

    def create_rnn_op(self):
350
        x = layers.data(
Y
Yu Yang 已提交
351
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
352
            dtype='float32',
Y
Yu Yang 已提交
353
            name='x',
C
chengduo 已提交
354
            append_batch_size=False)
Y
Yu Yang 已提交
355
        x.stop_gradient = False
356
        h_boot1 = layers.data(
Y
Yu Yang 已提交
357
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
358
            dtype='float32',
Y
Yu Yang 已提交
359
            name='h_boot1',
C
chengduo 已提交
360
            append_batch_size=False)
Y
Yu Yang 已提交
361
        h_boot1.stop_gradient = False
362
        h_boot2 = layers.data(
Y
Yu Yang 已提交
363
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
364
            dtype='float32',
Y
Yu Yang 已提交
365
            name='h_boot2',
C
chengduo 已提交
366
            append_batch_size=False)
Y
Yu Yang 已提交
367
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
368

C
chengduo 已提交
369
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
370 371 372 373 374
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
375 376 377
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
378 379 380 381 382 383

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
384 385


386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
C
chengduo 已提交
428 429 430

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
431 432 433 434

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
435
            dtype='float32',
436
            name='x',
C
chengduo 已提交
437
            append_batch_size=False)
438 439
        x.stop_gradient = False

C
chengduo 已提交
440
        rnn = layers.StaticRNN()
441 442 443
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
444
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
445 446 447 448 449 450
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
451 452
if __name__ == '__main__':
    unittest.main()