test_lamb_op.py 9.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator


class TestLambOp1(OpTest):
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-4,
            'beta1': 0.78,
            'beta2': 0.836,
            'weight_decay': 0.01
        }

    def setUp(self):
        '''Test Lamb Op with supplied attributes
        '''
        self.op_type = "lamb"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.001
        self.set_attrs()
        beta1_pow = self.attrs['beta1']**10
        beta2_pow = self.attrs['beta2']**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }


        param_out, moment1_out, \
            moment2_out = lamb_step(self.inputs, self.attrs)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out
        }

    def test_check_output(self):
        self.check_output()


class TestLambOp2(TestLambOp1):
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-8,
            'beta1': 0.9,
            'beta2': 0.999,
            'weight_decay': 0.01
        }


class TestLambOpMultipleSteps(TestLambOp1):
    def set_attrs(self):
        self.attrs = {
            'epsilon': 1e-8,
            'beta1': 0.9,
            'beta2': 0.999,
            'weight_decay': 0.01
        }
        self.num_steps = 10

    def test_check_output(self):
        for _ in range(self.num_steps):
            param_out, moment1_out, \
                moment2_out = lamb_step(self.inputs, self.attrs)

            self.outputs = {
                'Moment1Out': moment1_out,
                'Moment2Out': moment2_out,
                'ParamOut': param_out
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment1'] = moment1_out
            self.inputs['Moment2'] = moment2_out

            # Update powers of Beta1 and Beta2 for next time step
            self.inputs['Beta1Pow'] *= self.attrs['beta1']
            self.inputs['Beta2Pow'] *= self.attrs['beta1']

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def lamb_step(inputs, attributes):
    '''
    Simulate one step of the lamb optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']
    weight_decay = attributes['weight_decay']

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)

    r_1 = np.linalg.norm(param)
Y
Yibing Liu 已提交
144 145
    r_2 = np.linalg.norm(moment1_out / (np.sqrt(moment2_out) + epsilon) +
                         weight_decay * param)
Y
Yibing Liu 已提交
146 147
    lr_t = lr * r_1 / r_2

Y
Yibing Liu 已提交
148
    param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon) +
Y
Yibing Liu 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
                                weight_decay * param)
    return param_out, moment1_out, moment2_out


def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
    '''
    Simulate one step of the lamb optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment1, moment2,
    beta1 power accumulator and beta2 power accumulator
    '''
    param = inputs['Param']
    # grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']
    weight_decay = attributes['weight_decay']

    moment1_out = np.zeros(shape=[height, row_numel])
    moment2_out = np.zeros(shape=[height, row_numel])
    param_out = np.zeros(shape=[height, row_numel])

    def update_mom(row_id, update_value):
        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
                                                         ) * update_value
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(update_value)

        moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
                                                         ) * update_value
        moment2_out[row_id] = beta2 * moment2[row_id] + (
            1 - beta2) * np.square(update_value)

    def update_param():
        r_1 = np.linalg.norm(param)
Y
Yibing Liu 已提交
191
        r_2 = np.linalg.norm(moment1_out / (np.sqrt(moment2_out) + epsilon) +
Y
Yibing Liu 已提交
192 193 194
                             weight_decay * param)
        lr_t = lr * r_1 / r_2

Y
Yibing Liu 已提交
195 196
        param_out = param - lr_t * (moment1_out / (
            np.sqrt(moment2_out) + epsilon) + weight_decay * param)
Y
Yibing Liu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    for row_id in range(param_out.shape[0]):
        update_value = np.zeros(np_grad[0].shape).astype("float32")
        if row_id in rows:
            update_value = np_grad[rows.index(row_id)]
        update_mom(row_id, update_value)

    update_param()

    return param_out, moment1_out, moment2_out


class TestSparseLambOp(unittest.TestCase):
    def setup(self, scope, place):
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4

        height = 10
        rows = [0, 4, 7]
        self.rows = rows
        row_numel = 12
        self.row_numel = row_numel
        self.dense_inputs = {
            "Param": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
            "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
            'Beta1Pow': np.array([beta1**10]).astype("float32"),
            'Beta2Pow': np.array([beta2**10]).astype("float32"),
            "LearningRate": np.full((1), 2.0).astype("float32")
        }
        self.init_output = np.full((height, row_numel), 0.0).astype("float32")
        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            'weight_decay': 0.05
        }

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        self.sparse_inputs = ["Grad"]

        param_out, mom1, mom2 = lamb_step_sparse(
            self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
        self.outputs = {
            "ParamOut": param_out,
            "Moment1Out": mom1,
            "Moment2Out": mom2
        }

    def check_with_place(self, place):
        scope = core.Scope()
        self.setup(scope, place)

        op_args = dict()
        for key, np_array in self.dense_inputs.items():
            var = scope.var(key).get_tensor()
            var.set(np_array, place)
            op_args[key] = key
        for s in self.sparse_inputs:
            op_args[s] = s
        for s in self.outputs:
            var = scope.var(s).get_tensor()
            var.set(self.init_output, place)
            op_args[s] = s
        for k in self.attrs:
            op_args[k] = self.attrs[k]

        # create and run sgd operator
        lamb_op = Operator("lamb", **op_args)
        lamb_op.run(scope, place)

        for key, np_array in self.outputs.items():
            out_var = scope.var(key).get_tensor()
            actual = np.array(out_var)
            actual = actual.reshape([actual.size])
            np_array = np_array.reshape([np_array.size])

            for i in range(np_array.size):
                self.assertLess((actual[i] - np_array[i]), 0.00001)

    def test_sparse_lamb(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


if __name__ == "__main__":
    unittest.main()