BufferArg.h 6.9 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"

namespace paddle {

enum BufferType {
  TENSOR_NORMAL = 0,
  TENSOR_SEQUENCE_ID = 1,
  TENSOR_SEQUENCE_DATA = 2,
  TENSOR_SPARSE = 3
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

/**
 * BufferArg used as the argument type for Function.
 */
class BufferArg;
class SequenceArg;
class SparseMatrixArg;
typedef std::shared_ptr<BufferArg> BufferArgPtr;

class BufferArgs {
public:
  BufferArgs() {}
  size_t size() const { return args_.size(); }

  // add argument into BufferArgss
  template <typename Tensor>
  void addArg(const Tensor& arg) {
    args_.push_back(std::make_shared<BufferArg>(arg));
  }

  void addArg(const Matrix& arg, const TensorShape& shape);

  void addArg(const CpuSparseMatrix& arg);
  void addArg(const GpuSparseMatrix& arg);

  // get argument
  const BufferArg& operator[](size_t num) const {
    CHECK_LT(num, args_.size());
    return *args_[num];
  }

private:
  std::vector<BufferArgPtr> args_;
};

// an array of arbitrary dimensions
class BufferArg {
public:
  BufferArg(void* buf, ValueType valueType, const TensorShape& shape)
      : buf_(buf), valueType_(valueType), shape_(shape) {}

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

  BufferArg(const Matrix& matrix)
      : buf_((void*)matrix.getData()),
        valueType_(DataType<real>::value),
        shape_(2) {
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

  BufferArg(const Matrix& matrix, const TensorShape& shape)
      : buf_((void*)matrix.getData()),
        valueType_(DataType<real>::value),
        shape_(shape) {
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

  BufferArg(const Vector& vector)
      : buf_((void*)vector.getData()),
        valueType_(DataType<real>::value),
        shape_(1) {
    shape_.setDim(0, vector.getSize());
  }

  BufferArg(const IVector& vector)
      : buf_((void*)vector.getData()), valueType_(VALUE_TYPE_INT32), shape_(1) {
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(2, shape_.ndims());
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(1, shape_.ndims());
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
  BufferType bufferType_;
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
// if a < b than value_.buf_[a] < value_.buf_[b]
class SequenceIdArg : public BufferArg {
public:
  SequenceIdArg(void* buf, const TensorShape& shape)
      : BufferArg(buf, VALUE_TYPE_INT32, shape) {
    CHECK_EQ(shape_.ndims(), 1);
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

// sequence data
class SequenceArg : public BufferArg {
public:
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
              const SequenceIdArg& startPositions)
      : BufferArg(buf, valueType, shape), startPositions_(startPositions) {}

  SequenceArg(const Matrix& matrix, const IVector& vector)
      : BufferArg(matrix), startPositions_(vector) {}

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
                  SparseDataType type)
      : BufferArg(buf, valueType, shape),
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
    CHECK_EQ(shape_.ndims(), 2);
    CHECK_EQ(row_.shape().ndims(), 1);
    CHECK_EQ(col_.shape().ndims(), 1);
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

  SparseMatrixArg(const CpuSparseMatrix& sparse)
      : BufferArg(sparse),
        row_((void*)sparse.getRows(), VALUE_TYPE_INT32),
        col_((void*)sparse.getCols(), VALUE_TYPE_INT32) {}

  SparseMatrixArg(const GpuSparseMatrix& sparse)
      : BufferArg(sparse),
        row_((void*)sparse.getRows(), VALUE_TYPE_INT32),
        col_((void*)sparse.getCols(), VALUE_TYPE_INT32) {}

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle