test_parallel_op.py 5.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yang Yang 已提交
14
import unittest
15

Y
Yang Yang 已提交
16
import paddle.v2.fluid as fluid
Y
Yang Yu 已提交
17
import numpy
18 19 20
import sys
# TODO(dzhwinter): get places op check need to be enhanced.
sys.exit(0)
Y
Yang Yu 已提交
21 22 23


class BaseParallelForTest(unittest.TestCase):
Y
Yang Yu 已提交
24 25 26 27 28 29 30 31 32
    def run_test(self, callback, feed, fetch):
        """
        Run the unittest for parallel.for
        Args:
            callback(callable): A callable function returns a generator. There 
                are two yields in the generator function. The first yield 
                returns the data layers, and the second yield returns the loss. 
                The modified data variables will be sent back during the first 
                yield.
33

Y
Yang Yu 已提交
34 35 36 37 38
            feed(dict): The executor feeding dictionary.
            fetch(list|basestr): The fetch name lists. 

        Returns:
            None
39

Y
Yang Yu 已提交
40 41 42 43 44
        Raises:
            AssertionError when the computation of cpu, parallel.for in cpu, 
                gpu, parallel.for in gpu are different.

        """
Y
Yang Yu 已提交
45
        cpu = fluid.CPUPlace()
Y
Yang Yu 已提交
46
        result_cpu = self._run_test_impl_(
Y
Yang Yu 已提交
47 48 49 50 51
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=False)
Y
Yang Yu 已提交
52
        result_cpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
53 54 55 56 57 58 59
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=True)
        if fluid.core.is_compile_gpu():
            gpu = fluid.CUDAPlace(0)
Y
Yang Yu 已提交
60
            result_gpu = self._run_test_impl_(
Y
Yang Yu 已提交
61 62 63 64 65
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
                use_parallel=False)
Y
Yang Yu 已提交
66
            result_gpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
67 68 69 70 71 72 73 74 75
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
                use_parallel=True)
            self._assert_same_(fetch, result_cpu, result_cpu_parallel,
                               result_gpu, result_gpu_parallel)
        else:
            self._assert_same_(fetch, result_cpu, result_cpu_parallel)
Y
Yang Yu 已提交
76

Y
Yang Yu 已提交
77 78 79 80 81 82 83 84 85 86 87
    def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False):
        """
        Run a single test, returns the fetch values
        Args:
            place(Place): the computation place. 
            use_parallel(bool): Whether use parallel.for or not. 

        Returns:
            Fetched numpy arrays.

        """
Y
Yang Yu 已提交
88 89
        if isinstance(fetch, basestring):
            fetch = [fetch]
Y
Yang Yu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        main = fluid.Program()
        startup = fluid.Program()
        # Fix seed
        main.random_seed = 10
        startup.random_seed = 10

        with fluid.program_guard(main, startup):
            generator = callback()
            # Automatically insert parallel do if use_parallel = True
            if use_parallel:
                places = fluid.layers.get_places()
                pd = fluid.layers.ParallelDo(places)
                data = next(generator)

                if isinstance(data, fluid.Variable):
                    data = [data]
Y
Yang Yu 已提交
106

Y
Yang Yu 已提交
107 108 109 110
                with pd.do():
                    ins = map(pd.read_input, data)
                    if len(ins) == 1:
                        ins = ins[0]
Y
Yang Yu 已提交
111
                    loss = generator.send(ins)  # patch input
Y
Yang Yu 已提交
112 113 114 115 116
                    pd.write_output(loss)

                loss = pd()
            else:
                data = next(generator)
Y
Yang Yu 已提交
117 118
                loss = generator.send(data)
            self.assertIsNotNone(loss)
Y
Yang Yu 已提交
119 120 121 122 123 124 125
            avg_loss = fluid.layers.mean(x=loss)
            fluid.backward.append_backward(loss=avg_loss)

        exe = fluid.Executor(place)
        exe.run(startup)
        return exe.run(main, feed=feed, fetch_list=fetch)

Y
Yang Yu 已提交
126
    def _assert_same_(self, fetch, *args):
Y
Yang Yu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
        """
        Assert the return values of `run_test` are same.
        Args:
            fetch: Fetch list. Used for print error message
            *args: The fetch result lists of each situations.

        Returns:
            None
            
        Raises:
            AssertionError

        """

Y
Yang Yu 已提交
141 142 143 144 145 146 147 148 149 150 151
        def _impl_(a, b, fetch_id, item_id):
            item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
            flag = numpy.allclose(a, b, rtol=0.1)
            self.assertTrue(flag, "The {0} are different in {1}".format(
                fetch[fetch_id], item_str[item_id]))

        for i, items in enumerate(zip(*args)):
            self.assertGreater(len(items), 0)
            for j in range(1, len(items)):
                _impl_(items[0], items[j], fetch_id=i, item_id=j)

Y
Yang Yu 已提交
152 153 154 155 156

class ParallelOpTest(BaseParallelForTest):
    def test_simple_fc(self):
        def __network__():
            x = fluid.layers.data(shape=[784], dtype='float32', name='img')
Y
Yang Yu 已提交
157 158
            # FIXME: This is a bug of parallel.do
            x.stop_gradient = False
Y
Yang Yu 已提交
159 160 161 162 163
            x = yield x
            hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            loss = fluid.layers.mean(x=hidden)
            yield loss

Y
Yang Yu 已提交
164
        self.run_test(
Y
Yang Yu 已提交
165 166
            callback=__network__,
            feed={
Y
Yang Yu 已提交
167 168
                'img':
                numpy.random.random(size=(128 * 3, 784)).astype('float32')
Y
Yang Yu 已提交
169 170
            },
            fetch='fc1.w@GRAD')
Y
Yang Yang 已提交
171 172 173 174


if __name__ == '__main__':
    unittest.main()