depthwise_conv.cu 13.5 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
Z
zlx 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/platform/cuda_helper.h"
Z
zlx 已提交
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

22 23
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
Z
zlx 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename T>
__global__ void KernelDepthwiseConv(
    const int nthreads, const T* const input_data, const T* const filter_data,
    const int batch_size, const int output_channels, const int output_height,
    const int output_width, const int input_channels, const int input_height,
    const int input_width, const int filter_multiplier, const int filter_height,
    const int filter_width, const int stride_height, const int stride_width,
    const int padding_height, const int padding_width, T* const output_data) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;

  if (index < nthreads) {
    const int batch = index / output_channels / output_height / output_width;
    const int c_out = (index / output_height / output_width) % output_channels;
    const int h_out = (index / output_width) % output_height;
    const int w_out = index % output_width;

    const int c_in = c_out / filter_multiplier;
    const T* weight = filter_data + c_out * filter_height * filter_width;
    T value = 0;
    const int h_in_start = -padding_height + h_out * stride_height;
    const int w_in_start = -padding_width + w_out * stride_width;
45 46
    const int h_in_end = h_in_start + filter_height;
    const int w_in_end = w_in_start + filter_width;
X
xzl 已提交
47 48 49 50

    const int in_offset =
        ((batch * input_channels + c_in) * input_height) * input_width;

51 52 53 54 55 56 57 58 59 60 61
    const int h_end = h_in_end < input_height ? h_in_end : input_height;
    const int w_end = w_in_end < input_width ? w_in_end : input_width;
    const int h_start = h_in_start > 0 ? h_in_start : 0;
    const int w_start = w_in_start > 0 ? w_in_start : 0;

    for (int h_in = h_start; h_in < h_end; h_in++) {
      for (int w_in = w_start; w_in < w_end; w_in++) {
        const int offset = in_offset + h_in * input_width + w_in;
        value +=
            weight[(h_in - h_in_start) * filter_width + (w_in - w_in_start)] *
            input_data[offset];
Z
zlx 已提交
62 63 64 65 66
      }
    }
    output_data[index] = value;
  }
}
67

Z
zlx 已提交
68 69
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
template <typename T>
70 71 72 73 74 75 76 77
__global__ void KernelDepthwiseConvInputGrad(
    const int nthreads, const T* const output_grad_data,
    const T* const filter_data, const int batch_size, const int output_channels,
    const int output_height, const int output_width, const int input_channels,
    const int input_height, const int input_width, const int filter_multiplier,
    const int filter_height, const int filter_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
    T* const input_grad_data) {
Z
zlx 已提交
78 79
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < nthreads) {
80 81 82 83
    const int batch = index / input_channels / input_height / input_width;
    const int c_in = (index / input_height / input_width) % input_channels;
    const int h_in = (index / input_width) % input_height;
    const int w_in = index % input_width;
Z
zlx 已提交
84

85
    const int c_out_start = c_in * filter_multiplier;
Z
zlx 已提交
86

87 88
    int h_out_start =
        (h_in - filter_height + padding_height + stride_height) / stride_height;
Z
zlx 已提交
89
    h_out_start = 0 > h_out_start ? 0 : h_out_start;
90 91 92 93 94 95

    int h_out_end = (h_in + padding_height) / stride_height;
    h_out_end = output_height - 1 < h_out_end ? output_height - 1 : h_out_end;

    int w_out_start =
        (w_in - filter_width + padding_width + stride_width) / stride_width;
Z
zlx 已提交
96
    w_out_start = 0 > w_out_start ? 0 : w_out_start;
97 98 99

    int w_out_end = (w_in + padding_width) / stride_width;
    w_out_end = output_width - 1 < w_out_end ? output_width - 1 : w_out_end;
Z
zlx 已提交
100 101 102

    T value = 0;

103
    for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier;
Z
zlx 已提交
104 105
         c_out++) {
      for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) {
106
        const int filter_h = h_in + padding_height - h_out * stride_height;
Z
zlx 已提交
107
        for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) {
108 109 110 111 112 113
          const int filter_w = w_in + padding_width - w_out * stride_width;
          const int filter_offset = c_out * filter_height * filter_width +
                                    filter_h * filter_width + filter_w;
          const int output_grad_offset =
              ((batch * output_channels + c_out) * output_height + h_out) *
                  output_width +
Z
zlx 已提交
114
              w_out;
115 116
          value +=
              output_grad_data[output_grad_offset] * filter_data[filter_offset];
Z
zlx 已提交
117 118 119
        }
      }
    }
120
    input_grad_data[index] += value;
Z
zlx 已提交
121 122 123
  }
}

124
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
Z
zlx 已提交
125
template <typename T>
126 127 128 129 130 131 132 133
__global__ void KernelDepthwiseConvFilterGrad(
    const int nthreads, const T* const output_grad_data,
    const T* const input_data, const int num, const int output_channels,
    const int output_height, const int output_width, const int input_channels,
    const int input_height, const int input_width, const int filter_multiplier,
    const int filter_height, const int filter_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
    T* const filter_grad_data) {
Z
zlx 已提交
134 135
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < nthreads) {
136 137 138 139 140 141 142 143 144 145
    const int w_out = index % output_width;
    const int h_out = (index / output_width) % output_height;
    const int c_out = (index / output_width / output_height) % output_channels;
    const int batch = (index / output_width / output_height / output_channels);
    const int c_in = c_out / filter_multiplier;
    const int h_in_start = -padding_height + h_out * stride_height;
    const int w_in_start = -padding_width + w_out * stride_width;
    const int h_in_end =
        -padding_height + h_out * stride_height + filter_height;
    const int w_in_end = -padding_width + w_out * stride_width + filter_width;
X
xzl 已提交
146 147 148 149
    const int in_offset =
        (batch * input_channels + c_in) * input_height * input_width;

    T* addr_offset = filter_grad_data + c_out * filter_height * filter_width;
150 151 152 153 154 155 156 157 158 159 160 161
    const int h_end = h_in_end < input_height ? h_in_end : input_height;
    const int w_end = w_in_end < input_width ? w_in_end : input_width;
    const int h_start = h_in_start > 0 ? h_in_start : 0;
    const int w_start = w_in_start > 0 ? w_in_start : 0;

    for (int h_in = h_start; h_in < h_end; h_in++) {
      for (int w_in = w_start; w_in < w_end; w_in++) {
        const int offset = in_offset + h_in * input_width + w_in;
        const T diff_temp = output_grad_data[index] * input_data[offset];
        T* addr = addr_offset + (h_in - h_in_start) * filter_width +
                  (w_in - w_in_start);
        paddle::platform::CudaAtomicAdd(addr, diff_temp);
162
      }
Z
zlx 已提交
163 164 165 166 167 168 169 170 171
    }
  }
}

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
X
xzl 已提交
172
template <class T>
Z
zlx 已提交
173 174 175 176
class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
X
xzl 已提交
177 178 179
                  const framework::Tensor& filter,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, framework::Tensor* output) {
Z
zlx 已提交
180 181 182 183 184 185 186
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
187 188
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
Z
zlx 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* filter_data = filter.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

X
xzl 已提交
203
    KernelDepthwiseConv<T><<<grid, threads, 0, context.stream()>>>(
Z
zlx 已提交
204 205 206 207 208 209 210 211 212
        nthreads, input_data, filter_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        output_data);
  }
};

template <typename T>
213
class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
Z
zlx 已提交
214 215 216
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
217 218
                  const framework::Tensor& filter,
                  const framework::Tensor& output_grad,
X
xzl 已提交
219 220
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
221
                  framework::Tensor* input_grad) {
Z
zlx 已提交
222 223 224 225
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
226 227 228 229 230 231
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
    const int stride_height = strides[0];
Z
zlx 已提交
232 233 234 235
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

236
    const T* filter_data = filter.data<T>();
Z
zlx 已提交
237 238 239 240 241 242 243 244
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

245 246 247 248 249 250
    KernelDepthwiseConvInputGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, output_grad_data, filter_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        input_grad_data);
Z
zlx 已提交
251 252 253 254
  }
};

template <typename T>
255
class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T> {
Z
zlx 已提交
256 257 258
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
259
                  const framework::Tensor& output_grad,
X
xzl 已提交
260 261
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
262
                  framework::Tensor* filter_grad) {
Z
zlx 已提交
263 264 265 266
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
267 268 269 270 271
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = filter_grad->dims()[2];
    const int ksize_width = filter_grad->dims()[3];
Z
zlx 已提交
272 273 274 275 276 277 278
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_grad_data = output_grad.data<T>();
279
    T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
Z
zlx 已提交
280 281

    int nthreads = batch_size * output_channels * output_height * output_width;
282

Z
zlx 已提交
283 284 285 286
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

287 288 289 290 291 292
    KernelDepthwiseConvFilterGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, output_grad_data, input_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        filter_grad_data);
Z
zlx 已提交
293 294 295
  }
};

296 297
template class DepthwiseConvFunctor<platform::CUDADeviceContext, float>;
template class DepthwiseConvFunctor<platform::CUDADeviceContext, double>;
Z
zlx 已提交
298 299

template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
300
                                             float>;
Z
zlx 已提交
301
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
302 303 304 305
                                             double>;

template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
                                              float>;
Z
zlx 已提交
306
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
307
                                              double>;
Z
zlx 已提交
308 309 310 311

}  // namespace math
}  // namespace operators
}  // namespace paddle