reduce_sig.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/compat/op_utils.h"
16

17
namespace phi {
18 19 20

KernelSignature ReduceSumOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
21 22 23
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "sum_raw" KernelSignature.
24
    // And the InferMeta function(i.e. SumRawInferMeta) is accordance with
25 26 27 28 29 30
    // the "sum_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature("sum_raw",
                             {"X"},
                             {"dim", "keep_dim", "reduce_all", "out_dtype"},
                             {"Out"});
31
    }
32 33
    return KernelSignature(
        "sum", {"X"}, {"dim", "out_dtype", "keep_dim"}, {"Out"});
34 35 36 37 38 39
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceMeanOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
40 41 42
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "mean_raw" KernelSignature.
43
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
44
    // the "mean_raw" KernelSignature
45 46 47
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "mean_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
48
    }
49
    return KernelSignature("mean", {"X"}, {"dim", "keep_dim"}, {"Out"});
50 51 52 53
  }
  return KernelSignature("unregistered", {}, {}, {});
}

54 55 56 57 58
KernelSignature ReduceProdOpArgumentMapping(const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "reduce_prod", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
}

59 60 61 62 63 64
KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "max_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
65
    // the "max_raw" KernelSignature
66 67 68 69 70 71 72 73 74
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "max_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("max", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "min_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "min_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "min_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("min", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAnyOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "any_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "any_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "any_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("any", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAllOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "all_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "all_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "all_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("all", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

C
chentianyu03 已提交
123 124 125 126 127 128 129 130 131
KernelSignature ReduceSumGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "sum_grad",
      {"X", GradVarName("Out")},
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

132
}  // namespace phi
133

134 135
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
PD_REGISTER_BASE_KERNEL_NAME(reduce_mean, mean);
136
PD_REGISTER_BASE_KERNEL_NAME(reduce_max, max);
137 138 139 140
PD_REGISTER_BASE_KERNEL_NAME(reduce_min, min);
PD_REGISTER_BASE_KERNEL_NAME(reduce_all, all);
PD_REGISTER_BASE_KERNEL_NAME(reduce_any, any);

C
chentianyu03 已提交
141
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum_grad, sum_grad);
142

143 144
PD_REGISTER_ARG_MAPPING_FN(reduce_sum, phi::ReduceSumOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_mean, phi::ReduceMeanOpArgumentMapping);
145
PD_REGISTER_ARG_MAPPING_FN(reduce_prod, phi::ReduceProdOpArgumentMapping);
146
PD_REGISTER_ARG_MAPPING_FN(reduce_max, phi::ReduceMaxOpArgumentMapping);
147 148 149 150
PD_REGISTER_ARG_MAPPING_FN(reduce_min, phi::ReduceMinOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_all, phi::ReduceAllOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_any, phi::ReduceAnyOpArgumentMapping);

C
chentianyu03 已提交
151 152
PD_REGISTER_ARG_MAPPING_FN(reduce_sum_grad,
                           phi::ReduceSumGradOpArgumentMapping);