elementwise_max_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
wip  
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/elementwise_op_function.h"
F
wip  
fengjiayi 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35 36 37
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
38 39
    ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MaxFunctor<T>(), z);
F
wip  
fengjiayi 已提交
40 41 42 43
  }
};

template <typename T>
F
fengjiayi 已提交
44
struct ElementwiseMaxGradFunctor {
F
wip  
fengjiayi 已提交
45 46 47 48 49
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
50
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
wip  
fengjiayi 已提交
51 52 53

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
54
      dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
55 56 57
    }
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
58
      dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
59 60 61 62 63
    }
  }
};

template <typename T>
F
fengjiayi 已提交
64
struct ElementwiseMaxBroadCastGradFunctor {
F
wip  
fengjiayi 已提交
65
  template <typename Device, typename X, typename Y, typename Z, typename dX,
F
fengjiayi 已提交
66 67 68 69
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
wip  
fengjiayi 已提交
70
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
fengjiayi 已提交
71 72 73 74 75 76 77 78 79 80 81 82

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
83
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
84 85 86 87 88 89 90 91 92 93 94 95
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
    }
  }
};

template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
F
wip  
fengjiayi 已提交
96 97
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
98 99 100 101 102
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
F
wip  
fengjiayi 已提交
103 104
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
105
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
106
    }
F
fengjiayi 已提交
107

F
wip  
fengjiayi 已提交
108 109
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
110
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
111 112
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
F
wip  
fengjiayi 已提交
113 114 115 116
    }
  }
};

F
fengjiayi 已提交
117 118 119 120
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
F
fengjiayi 已提交
130 131
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
                           ElementwiseMaxBroadCastGradFunctor<T>,
C
chengduoZH 已提交
132 133
                           ElementwiseMaxBroadCast2GradFunctor<T>>(
        ctx, x, y, out, dout, axis, dx, dy);
F
fengjiayi 已提交
134 135 136
  }
};

F
wip  
fengjiayi 已提交
137 138
}  // namespace operators
}  // namespace paddle