partial_sum_op.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/partial_sum_op.h"
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

class PartialSumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Inputs(X) of PartialSumOp should not be empty."));

    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of PartialSumOp should not be null."));

    auto inputs_dims = ctx->GetInputsDim("X");

    const size_t inputs_num = inputs_dims.size();
    PADDLE_ENFORCE_GT(inputs_num, 0,
                      platform::errors::InvalidArgument(
                          "ShapeError: Input tensors count should > 0. But "
                          "recevied inputs' length is 0."));
    if (inputs_num == 1) {
      VLOG(3) << "Warning: partial_sum op have only one input, may be useless";
    }

    int start_index = ctx->Attrs().Get<int>("start_index");
    int length = ctx->Attrs().Get<int>("length");

    // Only suppert two dimensions now, should be extended later
    // when length is -1, need make sure all dimensions to be added are the same
    int64_t batch_size = -1;
    int64_t input_len = -1;
    for (size_t i = 0; i < inputs_num; ++i) {
      PADDLE_ENFORCE_EQ(inputs_dims[i].size(), 2,
                        platform::errors::InvalidArgument(
                            "Only suppert two dimensions input now."));
      if (i == 0) {
        batch_size = inputs_dims[0][0];
        input_len = inputs_dims[0][1];
      } else {
        PADDLE_ENFORCE_EQ(inputs_dims[i][0], batch_size,
                          platform::errors::InvalidArgument(
                              "The batch size of all inputs must be same"));
        PADDLE_ENFORCE_EQ(inputs_dims[i][1], input_len,
                          platform::errors::InvalidArgument(
                              "The input len of all inputs must be same"));
      }
    }
    PADDLE_ENFORCE_GT(input_len, start_index,
                      platform::errors::OutOfRange(
                          "start_index must be less than input len"));
    if (length > 0) {
      PADDLE_ENFORCE_GE(
          input_len, start_index + length,
          platform::errors::OutOfRange(
              "start_index + length is larger than input length"));
    }

    std::vector<int64_t> out_dims(2);
    out_dims[0] = batch_size;
    out_dims[1] = (length == -1) ? input_len - start_index : length;
82
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
83 84 85 86 87 88 89 90 91 92 93
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto inputs = ctx.MultiInput<Tensor>("X");
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
94
        input_data_type = framework::TransToProtoVarType(input->dtype());
95 96 97 98 99
        flag = 1;
        break;
      }
    }

100 101 102
    PADDLE_ENFORCE_EQ(flag, 1,
                      platform::errors::InvalidArgument(
                          "All Inputs of PartialSum OP are Empty!"));
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    return framework::OpKernelType(input_data_type, platform::CPUPlace());
  }
};

class PartialSumGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));

    auto in_names = ctx->Inputs(in_x);
    auto out_names = ctx->Outputs(out_x_g_n);

    PADDLE_ENFORCE_EQ(
        in_names.size(), out_names.size(),
        platform::errors::InvalidArgument(
            "The number of arguments in %s[%d] and %s[%d] is not equal.", in_x,
            in_names.size(), out_x_g_n, out_names.size()));
    for (size_t i = 0; i < in_names.size(); ++i) {
      if (out_names[i] != framework::kEmptyVarName) {
        ctx->ShareLoD(in_x, out_x_g_n, i, i);
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class PartialSumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input tensors of partial_sum operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of partial_sum operator.");
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
Z
zmx 已提交
148 149
        .SetDefault(false)
        .AsExtra();
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    AddAttr<int>("start_index", "The start index of tensor wanted to be added.")
        .SetDefault(0);
    AddAttr<int>("length", "The length of tensor wanted to be added.")
        .SetDefault(-1);
    AddComment(R"DOC(
PartialSum Operator.
This Op can sum the vars by specifying the initial position(start_index) and length(length). 
This OP exists in contrib, which means that it is not shown to the public.
Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be 
performed along the second dimension.

Examples:
  Input[0] = [[1,2,3],[3,4,5]]
  Input[1] = [[5,6,7],[7,8,9]]
  start_index = 0
  length = 2
  Output = [[6,8],
            [10,12]]
)DOC");
  }
};

template <typename T>
class PartialSumGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
178
  void Apply(GradOpPtr<T> op) const override {
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    op->SetType("partial_sum_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttr("start_index", this->GetAttr("start_index"));
    op->SetAttr("length", this->GetAttr("length"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(partial_sum, ops::PartialSumOp, ops::PartialSumOpMaker,
                  ops::PartialSumGradMaker<paddle::framework::OpDesc>,
                  ops::PartialSumGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(partial_sum_grad, ops::PartialSumGradOp);

REGISTER_OP_CPU_KERNEL(
    partial_sum,
    ops::PartialSumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PartialSumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::PartialSumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::PartialSumKernel<paddle::platform::CPUDeviceContext, int64_t>);

REGISTER_OP_CPU_KERNEL(partial_sum_grad, ops::PartialSumGradientOpKernel<float>,
                       ops::PartialSumGradientOpKernel<int>,
                       ops::PartialSumGradientOpKernel<double>,
                       ops::PartialSumGradientOpKernel<int64_t>);